A note on data-parallel \mathbb{T} estudo

Matteo Campanelli

See figure fig. 1 on next page.
Below are adaptations of some of the equations in Spartan for the data-parallel setting. For further reference on these equations, see Spartan paper, page 20, and our figure.

Below s, u, t are formal (tuples of) variables.

$$
\begin{gather*}
\tilde{F}(s, u):=\overbrace{\left(\sum_{v} \tilde{A}(u, v) \cdot \tilde{Z}(s, v)\right)} \cdot \overbrace{\left(\sum_{v} \tilde{B}(u, v) \cdot \tilde{Z}(s, v)\right)}-\overbrace{\sum_{v} \tilde{C}(u, v) \cdot \tilde{Z}(s, v)} \tag{1}\\
=\bar{A}(s, u) \cdot \bar{B}(s, u)-\bar{C}(s, u) \tag{2}\\
\quad Q^{*}(t):=\sum_{s, u} \chi_{t}(s \| u) \cdot \tilde{\mathcal{F}}(s, u) \tag{3}
\end{gather*}
$$

At the end of the first sumcheck we "fix" (s, u) on a random challenge point $r_{x}=(\nu, \rho)$. Second sumcheck is on the following claim:

$$
\begin{equation*}
y^{*}=\sum_{v} \tilde{Z}_{\mathrm{tot}}(\rho, v) \cdot\left(r_{A} \cdot \tilde{A}(\nu, v)+r_{B} \cdot B(\nu, v)+r_{C} \cdot C(\nu, v)\right) \tag{4}
\end{equation*}
$$

At the end of the second sumcheck we "fix" v on a random challenge point r_{y}.

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}, 1^{\ell}, 1^{N_{\text {sub }}}, 1^{K}\right) \\
& P\left(\left(\vec{x}^{(1)}, \ldots, \vec{x}^{(K)}\right),\left(\vec{w}^{(1)}, \ldots, \vec{w}^{(K)}\right)\right) \\
& \text { Let } Z_{\text {tot }}=\left(\vec{x}^{(1)}, \vec{w}^{(1)}, \ldots, \vec{x}^{(K)}, \vec{w}^{(K)}\right) \\
& C_{\text {tot }, Z} \leftarrow \operatorname{MippPST} \text {.Commit }\left(\tilde{Z}_{\text {tot }}\right) \\
& C_{\text {tot, } \mathrm{Z}} \\
& / / \operatorname{Claim} Q^{*}(\tau)=\sum_{s, u} \chi_{\tau}(s \| u) \cdot \tilde{\mathcal{F}}(s, u)=0 \\
& \text { Invoke SC for } \sum_{s, u} \chi_{\tau}(s \| u) \cdot \tilde{\mathcal{F}}(s, u)=0 \\
& \text { (Sample SC challenge } r_{x}=(\nu, \rho) \in \mathbb{F}^{\log K+\log N_{\text {sub }}} \text {) } \\
& \text { [Invoke step 6-11 in Spartan, pg 20, } \\
& \text { including SC on eq. (4) and sampling of } r_{y} \text {] } \\
& v \leftarrow \tilde{Z}_{\text {tot }}\left(\nu \| r_{y}\right)
\end{aligned}
$$

Same final steps as in Spartan, but:

- use MippPSTopening for $\tilde{Z}_{\text {tot }}\left(\right.$ on $\left.\left(\nu \| r_{y}\right)\right)$
- each computation commitment \tilde{M} is evaluated on $\left(\rho \| r_{y}\right)$

Fig. 1: Interactive version of our protocol for batch relations. Given sub-relation R, above we prove batch relation $R\left(\vec{x}^{(1)}, \vec{w}^{(1)}\right) \wedge \cdots \wedge R\left(\vec{x}^{(K)}, \vec{w}^{(K)}\right)\left(\vec{x}^{(1)}, \ldots, \vec{x}^{(K)}\right)$ are the public inputs, each of size $\ell .\left(\vec{w}^{(1)}, \ldots, \vec{w}^{(K)}\right)$ are the witnesses, each of size $N_{\text {sub }}$. We define the total witness size $N_{\text {tot }}$ as $N_{\text {tot }}:=N_{\text {sub }} \cdot K$. Notation $\tilde{v}(\vec{X})$ is the multi-linear extension of vector \vec{v}, i.e., $\tilde{v}(\vec{X}):=\sum_{i} v_{i} \cdot \chi_{(\vec{X})}(\vec{X})(i)$. "SC" stands for sumcheck. We use commas and concatenation interchangeably. NB: The protocol above is not including checks for public input; these checks require more but straightforward formal care; they are being ignored here for simplicity.

