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Abstract. We show that Rational Proofs do not satisfy basic compo-
sitional properties in the case where a large number of “computation
problems” are outsourced. We show that a “fast” incorrect answer is
more remunerable for the prover, by allowing him to solve more prob-
lems and collect more rewards. We present an enhanced definition of
Rational Proofs that removes the economic incentive for this strategy
and we present a protocol that achieves it for some uniform bounded-
depth circuits.

1 Introduction

The problem of securely outsourcing data and computation has received wide-
spread attention due to the rise of cloud computing: a paradigm where businesses
lease computing resources from a service (the cloud provider) rather than main-
tain their own computing infrastructure. Small mobile devices, such as smart
phones and netbooks, also rely on remote servers to store and perform compu-
tation on data that is too large to fit in the device.

It is by now well recognized that these new scenarios have introduced new
security problems that need to be addressed. When data is stored remotely,
outside our control, how can we be sure of its integrity? Even more interestingly,
how do we check that the results of outsourced computation on this remotely
stored data are correct. And how do perform these tests while preserving the
efficiency of the client (i.e. avoid retrieving the whole data, and having the client
perform the computation) which was the initial reason data and computations
were outsourced.

Verifiable Outsourced Computation is a very active research area in Cryptog-
raphy and Network Security (see [8] for a survey), with the goal of designing
protocols where it is impossible (under suitable cryptographic assumptions) for
a provider to “cheat” in the above scenarios. While much progress has been done
in this area, we are still far from solutions that can be deployed in practice.

A different approach is to consider a model where “cheating” might actually
be possible, but the provider would have no motivation to do so. In other words
while cryptographic protocols prevent any adversary from cheating, one considers
protocols that work against rational adversaries whose motivation is to maximize
a well defined utility function.
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Previous Work. An earlier work in this line is [3] where the authors describe
a system based on a scheme of rewards [resp. penalties] that the client assesses
to the server for computing the function correctly [resp. incorrectly]. However
in this system checking the computation may require re-executing it, something
that the client does only on a randomized subset of cases, hoping that the penalty
is sufficient to incentivize the server to perform honestly. Morever the scheme
might require an “infinite” budget for the rewards, and has no way to “enforce”
payment of penalties from cheating servers. For these reasons the best application
scenario of this approach is the incentivization of volunteer computing schemes
(such as SETI@Home or Folding@Home), where the rewards are non-fungible
“points” used for “social-status”.

Because verification is performed by re-executing the computation, in this
approach the client is “efficient” (i.e. does “less” work than the server) only in
an amortized sense, where the cost of the subset of executions verified by the
client is offset by the total number of computations performed by the server.
This implies that the server must perform many executions for the client.

Another approach, instead, is the concept of Rational Proofs introduced by
Azar and Micali in [1] and refined in subsequent papers [2,6]. This model cap-
tures, more accurately, real-world financial “pay-for-service” transactions, typi-
cal of cloud computing contractual arrangements, and security holds for a single
“stand-alone” execution.

In a Rational Proof, given a function f and an input x, the server returns
the value y = f(x), and (possibly) some auxiliary information, to the client. The
client will in turn pay the server for its work with a reward which is a function of
the messages sent by the server and some randomness chosen by the client. The
crucial property is that this reward is maximized in expectation when the server
returns the correct value y. Clearly a rational prover who is only interested in
maximizing his reward, will always answer correctly.

The most striking feature of Rational Proofs is their simplicity. For example
in [1], Azar and Micali show single-message Rational Proofs for any problem in
#P , where an (exponential-time) prover convinces a (poly-time) verifier of the
number of satisfying assignment of a Boolean formula.

For the case of “real-life” computations, where the Prover is polynomial and
the Verifier is as efficient as possible, Azar and Micali in [2] show d-round Ratio-
nal Proofs for functions computed by (uniform) Boolean circuits of depth d, for
d = O(log n) (which can be collapsed to a single round under some well-defined
computational assumption as shown in [6]). The problem of rational proofs for
any polynomial-time computable function remains tantalizingly open.

Our Results. Motivated by the problem of volunteer computation, our first
result is to show that the definition of Rational Proofs in [1,2] does not satisfy
a basic compositional property which would make them applicable in that sce-
nario. Consider the case where a large number of “computation problems” are
outsourced. Assume that solving each problem takes time T . Then in a time
interval of length T , the honest prover can only solve and receive the reward
for a single problem. On the other hand a dishonest prover, can answer up to
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T problems, for example by answering at random, a strategy that takes O(1)
time. To assure that answering correctly is a rational strategy, we need that at
the end of the T -time interval the reward of the honest prover be larger than
the reward of the dishonest one. But this is not necessarily the case: for some
of the protocols in [1,2,6] we can show that a “fast” incorrect answer is more
remunerable for the prover, by allowing him to solve more problems and collect
more rewards.

The next questions, therefore, was to come up with a definition and a pro-
tocol that achieves rationality both in the stand-alone case, and in the composi-
tion described above. We first present an enhanced definition of Rational Proofs
that removes the economic incentive for the strategy of fast incorrect answers,
and then we present a protocol that achieves it for the case of some (uniform)
bounded-depth circuits.

2 Rational Proofs

In the following we will adopt a “concrete-security” version of the “asymptotic”
definitions and theorems in [2,6]. We assume the reader is familiar with the
notion of interactive proofs [7].

Definition 1 (Rational Proof). A function f : {0, 1}n → {0, 1}n admits a
rational proof if there exists an interactive proof (P, V ) and a randomized reward
function rew : {0, 1}∗ → R≥0 such that

1. (Rational completeness) For any input x ∈ {0, 1}n, Pr[out((P, V )(x)) =
f(x)] = 1.

2. For every prover ˜P , and for any input x ∈ {0, 1}n there exists a δ
˜P (x) ≥ 0

such that E[rew(( ˜P , V )(x))] + δ
˜P (x) ≤ E[rew((P, V )(x))].

The expectations and the probabilities are taken over the random coins of the
prover and verifier.

Let ε
˜P = Pr[out((P, V )(x)) �= f(x)]. Following [6] we define the reward gap as

Δ(x) = minP ∗:εP∗=1[δP ∗(x)]

i.e. the minimum reward gap over the provers that always report the incorrect
value. It is easy to see that for arbitrary prover ˜P we have δ

˜P (x) ≥ ε
˜P · Δ(x).

Therefore it suffices to prove that a protocol has a strictly positive reward gap
Δ(x) for all x.

Examples of Rational Proofs. For concreteness here we show the protocol
for a single threshold gate (readers are referred to [1,2,6] for more examples).

Let Gn,k(x1, . . . , xn) be a threshold gate with n Boolean inputs, that evalu-
ates to 1 if at least k of the input bits are 1. The protocol in [2] to evaluate this
gate goes as follows. The Prover announces the number m̃ of input bits equal
to 1, which allows the Verifier to compute Gn,k(x1, . . . , xn). The Verifier select
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a random index i ∈ [1..n] and looks at input bit b = xi and rewards the Prover
using Brier’s Rule BSR(p̃, b) where p̃ = m̃/n i.e. the probability claimed by the
Prover that a randomly selected input bit be 1. Then

BSR(p̃, 1) = 2p̃ − p̃2 − (1 − p̃)2 + 1 = 2p̃(2 − p̃)

BSR(p̃, 0) = 2(1 − p̃) − p̃2 − (1 − p̃)2 + 1 = 2(1 − p̃2)

Let m be the true number of input bits equal to 1, and p = m/n the correspond-
ing probability, then the expected reward of the Prover is

pBSR(p̃, 1) + (1 − p)BSR(p̃, 0) (1)

which is easily seen to be maximized for p = p̃ i.e. when the Prover announces
the correct result. Moreover one can see that when the Prover announces a wrong
m̃ his reward goes down by 2(p − p̃)2 ≥ 2/n2. In other words for all n-bit input
x, we have Δ(x) = 2/n2 and if a dishonest Prover ˜P cheats with probability ε

˜P
then δ

˜P > 2ε
˜P /n2.

3 Profit vs. Reward

Let us now define the profit of the Prover as the difference between the reward
paid by the verifier and the cost incurred by the Prover to compute f and engage
in the protocol. As already pointed out in [2,6] the definition of Rational Proof
is sufficiently robust to also maximize the profit of the honest prover and not
the reward. Indeed consider the case of a “lazy” prover ˜P that does not evaluate
the function: even if ˜P collects a “small” reward, his total profit might still be
higher than the profit of the honest prover P .

Set R(x) = E[rew((P, V )(x))], R̃(x) = E[rew(( ˜P , V )(x))] and C(x) [resp.
C̃(x)] the cost for P [resp. ˜P ] to engage in the protocol. Then we want

R(x) − C(x) ≥ R̃(x) − C̃(x) =⇒ δ
˜P (x) ≥ C(x) − C̃(x)

In general this is not true (see for example the previous protocol), but it is always
possible to change the reward by a multiplier M . Note that if M ≥ C(x)/δ

˜P (x)
then we have that

M(R(x) − R̃(x)) ≥ C(x) ≥ C(x) − C̃(x)

as desired. Therefore by using the multiplier M in the reward, the honest prover
P maximizes its profit against all provers ˜P except those for which δ

˜P (x) ≤
C(x)/M , i.e. those who report the incorrect result with a “small” probability
ε
˜P (x) ≤ C(x)

MΔ(x) .
We note that M might be bounded from above, by budget considerations

(i.e. the need to keep the total reward MR(x) ≤ B for some budget B). This
point out to the importance of a large reward gap Δ(x) since the larger Δ(x) is,
the smaller the probability of a cheating prover ˜P to report an incorrect result
must be, in order for ˜P to achieve an higher profit than P .
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Example. In the above protocol we can assume that the cost of the honest
prover is C(x) = n, and we know that Δ(x) = n2. Therefore the profit of
the honest prover is maximized against all the provers that report an incorrect
result with probability larger than n3/M , which can be made sufficiently small
by choosing the appropriate multiplier.

Remark 1. If we are interested in an asymptotic treatment, it is important to
notice that as long as Δ(x) ≥ 1/poly(|x|) then it is possible to keep a polynomial
reward budget, and maximize the honest prover profit against all provers who
cheat with a substantial probability ε

˜P ≥ 1/poly′(|x|).

4 Sequential Composition

We now present the main results of our work. First we informally describe our
notion of sequential composition of rational proof, via a motivating example
and show that the protocols in [1,2,6] do not satisfy it. Then we present our
definition of sequential rational proofs, and a protocol that achieves it for circuits
of bounded depth.

4.1 Motivating Example

Consider the protocol in the previous section for the computation of the func-
tion Gn,k(·). Assume that the honest execution of the protocol (including the
computation of Gn,k(·)) has cost C = n.

Assume now that we are given a sequence of n inputs x(1), . . . , x(i), . . . where
each x(i) is an n-bit string. In the following let mi be the Hamming weight of
x(i) and pi = mi/n.

Therefore the honest prover investing C = n cost, will be able to execute the
protocol only once, say on input x(i). By setting p = p̃ = pi in Eq. 1, we see that
P obtains reward

R(x(i)) = 2(p2i − pi + 1) ≤ 2

Consider instead a prover ˜P which in the execution of the protocol outputs a
random value m̃ ∈ [0..n]. The expected reward of ˜P on any input x(i) is (by
setting p = pi and p̃ = m/n in Eq. 1 and taking expectations):

R̃(x(i)) = E
m,b

[BSR(
m

n
, b)]

=
1

n + 1

n
∑

m=0

E
b
[BSR(

m

n
, b]

=
1

n + 1

n
∑

m=0

(2(2pi · m

n
− m2

n2
− pi + 1))

= 2 − 2n + 1
3n

> 1 for n > 1.
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Therefore by “solving” just two computations ˜P earns more than P . Moreover
t the strategy of ˜P has cost 1 and therefore it earns more than P by investing a
lot less cost1.

Note that “scaling” the reward by a multiplier M does not help in this case,
since both the honest and dishonest prover’s rewards would be multiplied by the
same multipliers, without any effect on the above scenario.

We have therefore shown a rational strategy, where cheating many times and
collecting many rewards is more profitable than collecting a single reward for an
honest computation.

4.2 Sequentially Composable Rational Proofs

The above counterexample motivates the following Definition which formalizes
that the reward of the honest prover P must always be larger than the total
reward of any prover ˜P that invests less computation cost than P .

Technically this is not trivial to do, since it is not possible to claim the above
for any prover ˜P and any sequence of inputs, because it is possible that for a
given input x̃, the prover ˜P has “hardwired” the correct value ỹ = f(x̃) and can
compute it without investing any work. We therefore propose a definition that
holds for inputs randomly chosen according to a given probability distribution
D, and we allow for the possibility that the reward of a dishonest prover can
be “negligibly” larger than the reward of the honest prover (for example if ˜P is
lucky and such “hardwired” inputs are selected by D).

Definition 2 (Sequential Rational Proof). A rational proof (P, V ) for a
function f : {0, 1}n → {0, 1}n is ε-sequentially composable for an input distrib-
ution D, if for every prover ˜P , and every sequence of inputs x, x1, . . . , xk ∈ D
such that C(x) ≥ ∑k

i=1 C̃(xi) we have that
∑

i R̃(xi) − R ≤ ε.

A few sufficient conditions for sequential composability follow.

Lemma 1. Let (P, V ) be a rational proof. If for every input x it holds that
R(x) = R and C(x) = C for constants R and C, and the following inequality
holds for every ˜P �= P and input x ∈ D:

R̃(x)
R

≤ C̃(x)
C

+ ε

then (P, V ) is kRε-sequentially composable for D.

Proof. It suffices to observe that, for any k inputs x1, ..., xk, the inequality above
implies

k
∑

i=1

R̃(xi) ≤ R[
k

∑

i=1

(
C̃(xi)

C
+ ε)] ≤ R + kRε

where the last inequality holds whenever
∑k

i=1 C̃(xi) ≤ C as in Definition 2.
1 If we think of cost as time, then in the same time interval in which P solves one

problem, ˜P can solve up to n problems, earning a lot more money, by answering fast
and incorrectly.
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Corollary 1. Let (P, V ) and rew be respectively an interactive proof and a
reward function as in Definition 1; if rew can only assume the values 0 and
R for some constant R, let p̃x = Pr[rew(( ˜P , V )(x)) = R]. If for x ∈ D

p̃x ≤ C̃(x)
C

+ ε

then (P, V ) is kRε-sequentially composable for D.

Proof. Observe that R̃(x) = p̃x · R and then apply Lemma 1.

4.3 Sequential Rational Proofs in the PCP Model

We now describe a rational proof appeared in [2] and prove that is sequentially
composable. The protocol assumes the existence of a trusted memory storage
to which both Prover and Verifier have access, to realize the so-called “PCP”
(Probabilistically Checkable Proof) model. In this model, the Prover writes a
very long proof of correctness, that the verifier checks only in a few randomly
selected positions. The trusted memory is needed to make sure that the prover
is “committed” to the proof before the verifier starts querying it.

The following protocol for proofs on a binary logical circuit C appeared in [2].
The Prover writes all the (alleged) values αw for every wire w ∈ C, on the trusted
memory location. The Verifier samples a single random gate value to check its
correctness and determines the reward accordingly:

1. The Prover writes the vector {αw}w∈C
2. The Verifier samples a random gate g ∈ C.

– The Verifier reads αgout
, αgL

, αgR
, with gout, gL, gR being respectively the

output, left and right input wires of g; the verifier checks that αgout
=

g(αgL
, αgR

);
– If g in an input gate the Verifier also checks that αgL

, αgR
correspond to

the correct input values;
The Verifier pays R if both checks are satisfied, otherwise it pays 0.

Theorem 1 ([2]). The protocol above is a rational proof for any boolean function
in P ||NP , the class of all languages decidable by a polynomial time machine that
can make non-adaptive queries to NP .

We will now show a cost model where the rational proof above is sequentially
composable. We will assume that the cost for any prover is given by the number
of gates he writes. Thus, for any input x, the costs for honest and dishonest
provers are respectively C(x) = S, where S = |C|, and C̃(x) = s̃ where s̃ is the
number of gates written by the dishonest prover. Observe that in this model a
dishonest prover may not write all the S gates, and that not all of the s̃ gates
have to be correct. Let σ ≤ s̃ the number of correct gates written by ˜P .
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Theorem 2. In the cost model above the PCP protocol in [2] is sequentially
composable.

Proof. Observe that the probability p̃x that ˜P �= P earns R is such that

p̃x =
σ

S
≤ s̃

S
=

C̃

C

Applying Corollary 1 completes the proof.

The above cost model, basically says that the cost of writing down a gate dom-
inates everything else, in particular the cost of computing that gate. In other
cost models a proof of sequential composition may not be as straightforward.
Assume, for example, that the honest prover pays $1 to compute the value of a
single gate while writing down that gate is “free”. Now p̃x is still equal to σ

S but
to prove that this is smaller than C̃

C we need some additional assumption that
limits the ability for ˜P to “guess” the right value of a gate without computing
it (which we will discuss in the next Section).

4.4 Sequential Composition and the Unique Inner State
Assumption

Definition 2 for sequential rational proofs requires a relationship between the
reward earned by the prover and the amount of “work” the prover invested to
produce that result. The intuition is that to produce the correct result, the prover
must run the computation and incur its full cost. Unfortunately this intuition
is difficult, if not downright impossible, to formalize. Indeed for a specific input
x a “dishonest” prover ˜P could have the correct y = f(x) value “hardwired”
and could answer correctly without having to perform any computation at all.
Similarly, for certain inputs x, x′ and a certain function f , a prover ˜P after
computing y = f(x) might be able to “recycle” some of the computation effort
(by saving some state) and compute y′ = f(x′) incurring a much smaller cost
than computing it from scratch.

A way to circumvent this problem was suggested in [3] under the name of
Unique Inner State Assumption: the idea is to assume a distribution D over the
input space. When inputs x are chosen according to D, then we assume that
computing f requires cost C from any party: this can be formalized by saying
that if a party invests C̃ = γC effort (for γ ≤ 1), then it computes the correct
value only with probability negligibly close to γ (since a party can always have
a “mixed” strategy in which with probability γ it runs the correct computation
and with probability 1 − γ does something else, like guessing at random).

Assumption 1. We say that the (C, ε)-Unique Inner State Assumption holds
for a function f and a distribution D if for any algorithm ˜P with cost C̃ = γC,
the probability that on input x ∈ D, ˜P outputs f(x) is at most γ + (1 − γ)ε.
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Note that the assumption implicitly assumes a “large” output space for f (since
a random guess of the output of f will be correct with probability 2−n where n
is the binary length of f(x)).

More importantly, note that Assumption 1 immediately yields our notion of
sequential composability, if the Verifier can detect if the Prover is lying or not.
Assume, as a mental experiment for now, that given input x, the Prover claims
that ỹ = f(x) and the Verifier checks by recomputing y = f(x) and paying a
reward of R to the Prover if y = ỹ and 0 otherwise. Clearly this is not a very
useful protocol, since the Verifier is not saving any computation effort by talking
to the Prover. But it is sequentially composable according to our definition, since
p̃x, the probability that ˜P collects R, is equal to the probability that ˜P computes
f(x) correctly, and by using Assumption 1 we have that

p̃x = γ + (1 − γ)ε ≤ C̃

C
+ ε

satisfying Corollary 1.
To make this a useful protocol we adopt a strategy from [3], which also uses

this idea of verification by recomputing. Instead of checking every execution, we
check only a random subset of them, and therefore we can amortize the Verifier’s
effort over a large number of computations. Fix a parameter m. The prover sends
to the verifier the values ỹj which are claimed to be the result of computing f
over m inputs x1, . . . , xm. The verifier chooses one index i randomly between
1 and m, and computes yi = f(xi). If yi = ỹi the verifier pays R, otherwise it
pays 0.

Let T be the total cost by the honest prover to compute m instances: cleary
T = mC. Let T̃ = ΣiC̃i be the total effort invested by P̃ , by investing C̃i on the
computation of xi. In order to satisfy Corollary 1 we need that p̃x, the probability
that ˜P collects R, be less than T̃ /T + ε.

Let γi = C̃i/C, then under Assumption 1 we have that ỹi is correct with
probability at most γi + (1 − γi)ε. Therefore if we set γ =

∑

i γi/m we have

p̃x =
1
m

∑

i

[γi + (1 − γi)ε] = γ + (1 − γ)ε ≤ γ + ε

But note that γ = T̃ /T as desired since

T̃ =
∑

i

C̃i =
∑

i

γiC = T
∑

i

γi/m

Efficiency of the Verifier. If our notion of “efficient Verifier” is a verifier who
runs in time o(C) where C is the time to compute f , then in the above protocol
m must be sufficiently large to amortize the cost of computing one execution
over many (in particular a constant – in the input size n – value of m would
not work). In our “concrete analysis” treatment, if we requests that the Verifier
runs in time δC for an “efficiency” parameter δ ≤ 1, then we need m ≥ δ−1.
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Therefore we are still in need of a protocol which has an efficient Verifier,
and would still works for the “stand-alone” case (m = 1) but also for the case
of sequential composability over any number m of executions.

5 Our Protocol

We now present a protocol that works for functions f : {0, 1}n → {0, 1}n

expressed by an arithmetic circuit C of size C and depth d and fan-in 2, given
as a common input to both Prover and Verifier together with the input x.

Intuitively the idea is for the Prover to provide the Verifier with the output
value y and its two “children” yL, yR in the gate, i.e. the two input values of the
last output gate G. The Verifier checks that G(yL, yR) = y, and then asks the
Prover to verify that yL or yR (chosen a random) is correct, by recursing on the
above test. The protocol description follows.

1. The Prover evaluates the circuit on x and sends the output value y1 to the
Verifier.

2. Repeat r times: The Verifier identifies the root gate g1 and then invokes
Round(1, g1, y1),

where the procedure Round(i, gi, yi) is defined for 1 ≤ i ≤ d as follows:

1. The Prover sends the value of the input wires z0i and z1i of gi to the Verifier.
2. The Verifiers performs the following

– Check that yi is the result of the operation of gate gi on inputs z0i and z1i .
If not STOP and pay a reward of 0.

– If i = d (i.e. if the inputs to gi are input wires), check that the values of z0i
and z1i are equal to the corresponding bits of x. Pay reward R to Merlin
if this is the case, nothing otherwise.

– If i < d, choose a random bit b, send it to Merlin and invoke Round(i +
1, gb

i+1, z
b
i ) where gb

i+1 is the child gate of gi whose output is zb
i .

5.1 Efficiency

The protocol runs at most in d rounds. In each round, the Prover sends a constant
number of bits representing the values of specific input and output wires; The
Verifier sends at most one bit per round, the choice of the child gate. Thus the
communication complexity is O(d) bits.

The computation of the Verifier in each round is: (i) computing the result of
a gate and checking for bit equality; (ii) sampling a child. Gate operations and
equality are O(1) per round. We assume our circuits are T -uniform, which allows
the Verifier to select the correct gate in time T (n)2. Thus the Verifier runs in
O(rd · T (n)) with r = O(log C).
2 We point out that the Prover can provide the Verifier with the requested gate and

then the Verifier can use the uniformity of the circuit to check that the Prover has
given him the correct gate at each level in time O(T (n)).
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5.2 Proofs of (Stand-Alone) Rationality

Theorem 3. The protocol in Sect. 5 for r = 1 is a Rational Proof according to
Definition 1.

We prove the above theorem by showing that for every input x the reward gap
Δ(x) is positive.

Proof. Let ˜P a prover that always reports ỹ �= y1 = f(x) at Round 1.
Let us proceed by induction on the depth d of the circuit. If d = 1 then there

is no possibility for ˜P to cheat successfully, and its reward is 0.
Assume d > 1. We can think of the binary circuit C as composed by two

subcircuits CL and CR and the output gate g1 such that f(x) = g1(CL(x), CR(x)).
The respective depths dL, dR of these subcircuits are such that 0 ≤ dL, dR ≤
d − 1 and max(dL, dR) = d − 1. After sending ỹ, the protocol requires that ˜P
sends output values for CL(x) and CR(x); let us denote these claimed values
respectively with ỹL and ỹR. Notice that at least one of these alleged values will
be different from the respective correct subcircuit output: if it were otherwise,
V would reject immediately as g(ỹL, ỹR) = f(x) �= ỹ. Thus at most one of the
two values ỹL, ỹR is equal to the output of the corresponding subcircuit. The
probability that the ˜P cheats successfully is:

Pr[V accepts] ≤ 1
2

· (Pr[V accepts on CL] + Pr[V acceptson CR]) (2)

≤ 1
2

· (1 − 2−max(dL,dR)) +
1
2

(3)

≤ 1
2

· (1 − 2−d+1) +
1
2

(4)

= 1 − 2−d (5)

At Eq. 3 we used the inductive hypothesis and the fact that all probabilities are
at most 1.

Therefore the expected reward of ˜P is R̃ ≤ R(1 − 2−d) and the reward gap
is Δ(x) = 2−dR (see Remark 2 or an explanation of the equality sign).

The following useful corollary follows from the proof above.

Corollary 2. If the protocol described in Sect. 5 is repeated r ≥ 1 times a prover
can cheat with probability at most (1 − 2−d)r.

Remark 2. We point out that one can always build a prover strategy P ∗ which
always answers incorrectly and achieves exactly the reward R∗ = R(1 − 2−d).
This prover outputs an incorrect ỹ and then computes one of the subcircuits that
results in one of the input values (so that at least one of the inputs is correct).
This will allow him to recursively answer with values z0i and z1i where one of the
two is correct, and therefore be caught only with probability 2−d.

Remark 3. In order to have a non-negligible reward gap (see Remark 1) we
need to limit ourselves to circuits of depth d = O(log n).
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5.3 Proof of Sequential Composability

General Sufficient Conditions for Sequential Composability

Lemma 2. Let C be a circuit of depth d. If the (C, ε) Unique Inner State
Assumption (see Assumption 1) holds for the function f computed by C, and
input distribution D, then the protocol presented above with r repetitions is a
kεR-sequentially composable Rational Proof for C for D if the following inequal-
ity holds

(1 − 2−d)r ≤ 1
C

Proof. Let γ = C̃
C . Consider x ∈ D and prover ˜P which invests effort C̃ ≤ C.

Under Assumption 1, ˜P gives the correct outputs with probability γ+ε – assume
that in this case ˜P collects the reward R. If ˜P gives an incorrect output we
know (following Corollary 2) that he collects the reward R with probability at
most (1 − 2−d)r which by hypothesis is less than γ. So either way we have that
R̃ ≤ (γ + ε)R and therefore applying Lemma1 concludes the proof.

The problem with the above Lemma is that it requires a large value of r for
the result to be true resulting in an inefficient Verifier. In the following sections
we discuss two approaches that will allows us to prove sequential composability
even for an efficient Verifier:

– Limiting the class of provers we can handle in our security proof;
– Limiting the class of functions/circuits.

Limiting the Strategy of the Prover: Non-adaptive Provers. In proving
sequential composability it is useful to find a connection between the amount
of work done by a dishonest prover and its probability of cheating. The more a
dishonest prover works, the higher its probability of cheating. This is true for our
protocol, since the more “subcircuits” the prover computes correctly, the higher
is the probability of convincing the verifier of an incorrect output becomes. The
question then is: how can a prover with an “effort budget” to spend maximize
its probability of success in our protocol?

As we discussed in Remark 2, there is an adaptive strategy for the ˜P to max-
imize its probability of success: compute one subcircuit correctly at every round
of the protocol. We call this strategy “adaptive”, because the prover allocates
its “effort budget” C̃ on the fly during the execution of the rational proof. Con-
versely a non-adaptive prover ˜P uses C̃ to compute some subcircuits in C before
starting the protocol. Clearly an adaptive prover strategy is more powerful, than
a non-adaptive one (since the adaptive prover can direct its computation effort
where it matters most, i.e. where the Verifier “checks” the computation).

Is it possible to limit the Prover to a non-adaptive strategy? This could be
achieved by imposing some “timing” constraints to the execution of the proto-
col: to prevent the prover from performing large computations while interacting
with the Verifier, the latter could request that prover’s responses be delivered
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“immediately”, and if a delay happens then the Verifier will not pay the reward.
Similar timing constraints have been used before in the cryptographic litera-
ture, e.g. see the notion of timing assumptions in the concurrent zero-knowledge
protocols in [5].

Therefore in the rest of this subsection we assume that non-adaptive strate-
gies are the only rational ones and proceed in analyzing our protocol under the
assumption that the prover is adopting a non-adaptive strategy.

Consider a prover ˜P with effort budget C̃ < C. A DFS (for “depth first
search”) prover uses its effort budget C̃ to compute a whole subcircuit of size
C̃ and maximal depth dDFS . Call this subcircuit CDFS . ˜P can answer correctly
any verifier’s query about a gate in CDFS . During the interaction with V , the
behavior of a DFS prover is as follows:

– At the beginning of the protocol send an arbitrary output value y1.
– During procedure Round(i, gi, yi):

• If gi ∈ CDFS then ˜P sends the two correct inputs z0i and z1i .
• If gi �∈ CDFS and neither of gi’s input gate belongs to CDFS then ˜P sends

two arbitrary z0i and z1i that are consistent with yi, i.e. gi(z0i , z1i ) = yi.
• gi �∈ CDFS and one of gi’s input gates belongs to CDFS , then ˜P will send

the correct wire known to him and another arbitrary value consistent with
yi as above.

Lemma 3 (Advantage of a DFS Prover). In one repetition of the protocol
above, a DFS prover with effort budget C̃ investment has probability of cheating
p̃DFS bounded by

p̃DFS ≤ 1 − 2−dDFS

The proof of Lemma 3 follows easily from the proof of the stand-alone rationality
of our protocol (see Theorem 3).

If a DFS prover focuses on maximizing the depth of a computed subcircuit
given a certain investment, BFS provers allot their resources to compute all sub-
circuits rooted at a certain height. A BFS prover with effort budget C̃ computes
the value of all gates up to the maximal height possible dBFS . Note that dBFS

is a function of the circuit C and of the effort C̃. Let CBFS be the collection
of gates computed by the BFS prover. The interaction of a BFS prover with V
throughout the protocol resembles that of the DFS prover outlined above:

– At the beginning of the protocol send an arbitrary output value y1.
– During procedure Round(i, gi, yi):

• If gi ∈ CBFS then ˜P sends the two correct inputs z0i and z1i .
• If gi �∈ CBFS and neither of gi’s input gate belongs to CBFS then ˜P sends

two arbitrary z0i and z1i that are consistent with yi, i.e. gi(z0i , z1i ) = yi.
• gi �∈ CBFS and both gi’s input gates belong to CDFS , then ˜P will send one

of the correct wires known to him and another arbitrary value consistent
with yi as above.
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As before, it is not hard to see that the probability of successful cheating by a
BFS prover can be bounded as follows:

Lemma 4 (Advantage of a BFS Prover). In one repetition of the proto-
col above, a BFS prover with effort budget C̃ has probability of cheating p̃BFS

bounded by
p̃ ≤ 1 − 2−dBFS

BFS and DFS provers are both special cases of the general non-adaptive strategy
which allots its investment C̃ among a general collection of subcircuits C. The
interaction with V of such a prover is analogous to that of a BFS/DFS prover
but with a collection of computed subcircuits not constrained by any specific
height. We now try to formally define what the success probability of such a
prover is.

Definition 3 (Path Experiment). Consider a circuit C and a collection C
of subcircuits of C. Perform the following experiment: starting from the output
gate, flip a unbiased coin and choose the “left” subcircuit or the “right” subcircuit
at random with probability 1/2. Continue until the random path followed by the
experiment reaches a computed gate in C. Let i be the height of this gate, which is
the output of the experiment. Define with Πi the probability that this experiment
outputs i.

The proof of the following Lemma is a generalization of the proof of security of
our scheme. Once the “verification path” chosen by the Verifier enters a fully
computed subcircuit at height i (which happens with probability ΠC

i ), the prob-
ability of success of the Prover is bounded by (1 − 2−i)

Lemma 5 (Advantage of a Non Adaptive Prover). In one repetition of
the protocol above, a generic prover with effort budget C̃ used to compute a
collection C of subcircuits, has probability of cheating p̃C bounded by

p̃C ≤
d

∑

i=0

Πi(1 − 2−i)

where Πi-s are defined as in Definition 3.

Limiting the Class of Functions: Regular Circuits. Lemma 5 still does
not produce a clear bound on the probability of success of a cheating prover.
The reason is that it is not obvious how to bound the probabilities ΠC

i that arise
from the computed subcircuits C since those depends in non-trivial ways from
the topology of the circuit C.

We now present a type of circuits for which it can be shown that the BFS
strategy is optimal. The restriction on the circuit is surprisingly simple: we call
them regular circuits. In the next section we show examples of interesting func-
tions that admit regular circuits.
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Definition 4 (Regular Circuit). A circuit C is said to be regular if the fol-
lowing conditions hold:

– C is layered;
– every gate has fan-in 2;
– the inputs of every gate are the outputs of two distinct gates.

The following lemma states that, in regular circuits, we can bound the advantage
of any prover investing C̃ by looking at the advantage of a BFS prover with the
same investment.

Lemma 6 (A Bound for Provers’ Advantage in Regular Circuits). Let
˜P be a prover investing C̃. Let C be the circuit being computed and δ = dBFS(C, C̃).
In one repetition of the protocol above, the advantage of ˜P is bounded by

p̃ ≤ p̃BFS = 1 − 2−δ

Proof. Let C be the family of subcircuits computed by ˜P with effort C̃. As
pointed out above the probability of success for ˜P is

p̃ ≤
d

∑

i=0

ΠC
i (1 − 2−i)

Consider now a prover ˜P ′ which uses C̃ effort to compute a different collection
of subcircuits C′

defined as follows:

– Remove a gate from a subcircuit of height j in C: this produces two subcircuits
of height j − 1. This is true because of the regularity of the circuit: since the
inputs of every gate are the outputs of two distinct gates, when removing a
gate of height j this will produce two subcircuits of height j − 1;

– Use that computation to “join” two subcircuits of height k into a single sub-
circuit of height k + 1. Again we are using the regularity of the circuit here:
since the circuit is layered, the only way to join two subcircuits into a single
computed subcircuit is to take two subcircuits of the same height.

What happens to the probability p̃′ of success of ˜P ′? Let 	 be the number of
possible paths generated by the experiment above with C. Then the probability of
entering a computed subcircuit at height j decreases by 1/	 and that probability
weight goes to entering at height j − 1. Similarly the probability of entering at
height k goes down by 2/	 and that probability weight is shifted to entering at
height k + 1. Therefore

p̃′ ≤
∑

i�=j,j−1,k,k+1

Πi(1 − 2−i)

+ (Πj − 1
	
)(1 − 2−j) + (Πj−1 +

1
	
)(1 − 2−j+1)

+ (Πk − 2
	
)(1 − 2−k) + (Πk+1 +

2
	
)(1 − 2−k−1)
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= p̃ +
1

	2j
− 1

	2j−1
+

1
	2k−1

− 1
	2k

= p̃ +
2k − 2k+1 + 2j+1 − 2j

	2j+k
= p̃ +

2j − 2k

	2j+k

Note that p̃′ increases if j > k which means that it’s better to take “com-
putation” away from tall computed subcircuits to make them shorter, and use
the saved computation to increase the height of shorter computed subtrees, and
therefore that the probability is maximized when all the subtrees are of the same
height, i.e. by the BFS strategy which has probability of success p̃BFS = 1−2−δ.

The above Lemma, therefore, yields the following.

Theorem 4. Let C be a regular circuit of size C. If the (C, ε) Unique Inner
State Assumption (see Assumption 1) holds for the function f computed by C,
and input distribution D, then the protocol presented above with r repetitions is
a kεR-sequentially composable Rational Proof for C for D if the prover follows a
non-adaptive strategy and the following inequality holds for all C̃

(1 − 2−δ)r ≤ C̃

C

where δ = dBFS(C, C̃).

Proof. Let γ = C̃
C . Consider x ∈ D and prover ˜P which invests effort C̃ ≤ C.

Under Assumption 1, ˜P gives the correct outputs with probability γ+ε – assume
that in this case ˜P collects the reward R.

If ˜P gives an incorrect output we can invoke Lemma 6 and conclude that he
collects reward R with probability at most (1 − 2−δ)r which by hypothesis is
less than γ. So either way we have that R̃ ≤ (γ + ε)R and therefore applying
Lemma 1 concludes the proof.

6 Results for FFT Circuits

In this section we apply the previous results to the problem of computing FFT
circuits, and by extension to polynomial evaluations.

6.1 FFT Circuit for Computing a Single Coefficient

The Fast Fourier Transform is an almost ubiquitous computational problem that
appears in many applications, including many of the volunteer computations
that motivated our work. As described in [4] a circuit to compute the FFT of a
vector of n input elements, consists of log n levels, where each level comprises n/2
butterflies gates. The output of the circuit is also a vector of n input elements.

Let us focus on the circuit that computes a single element of the output
vector: it has log n levels, and at level i it has n/2i butterflies gates. Moreover
the circuit is regular, according to Definition 4.



286 M. Campanelli and R. Gennaro

Theorem 5. Under the (C, ε)-unique inner state assumption for input distribu-
tion D, the protocol in Sect. 5, when repeated r = O(1) times, yields sequentially
composable rational proofs for the FFT, under input distribution D and assuming
non-adaptive prover strategies.

Proof. Since the circuit is regular we can prove sequential composability by
invoking Theorem 4 and proving that for r = O(1), the following inequality
holds

p̃ = (1 − 2−δ)r ≤ C̃

C

where δ = dBFS(C, C̃).
But for any δ̃ < d, the structure of the FFT circuit implies that the number

of gates below height δ̃ is C̃δ̃ = Θ(C(1 − 2−δ̃)). Thus the inequality above can
be satisfied with r = Θ(1).

6.2 Mixed Strategies for Verification

One of the typical uses of the FFT is to change representation for polynomials.
Given a polynomial P (x) of degree n − 1 we can represent it as a vector of n
coefficients [a0, . . . , an−1] or as a vector of n points [P (ω0), . . . , P (ωn−1)]. If ωi

are the complext n-root of unity, the FFT is the algorithm that goes from one
representation to the other in O(n log n) time, rather than the obvious O(n2).

In this section we consider the following problem: given two polynomial P,Q
of degree n − 1 in point representation, compute the inner product of the coef-
ficients of P,Q. A fan-in two circuit computing this function could be built as
follows:

– two parallel FFT subcircuits computing the coefficient representation of P,Q
(log n-depth and n log n) size total for the 2 circuits);

– a subcircuit where at the first level the i-degree coefficients are multiplied
with each other, and then all these products are added by a binary tree of
additions O(log n)-depth and O(n) size);

Note that this circuit is regular, and has depth 2 log n+1 and size n log n+n+1.
Consider a prover ˜P who pays C̃ < n log n effort. Then, since the BFS strat-

egy is optimal, the probability of convincing the Verifier of a wrong result of the
FFT is (1− 2−d̃)r where d̃ = c log n with c ≤ 1. Note also that C̃

C < 1. Therefore
with r = O(nc) repetitions, the probability of success can be made smaller than
C̃
C . The Verifier’s complexity is O(nc log n) = o(n log n).

If C̃ ≥ n log n then the analysis above fails since d̃ > log n. Here we observe
that in order for ˜P to earn a larger reward than P , it must be that P has run at
least k = O(log n) executions (since it is possible to find k + 1 inputs such that
(k + 1)C̃ ≤ kC only if k > log n).

Assume for a moment that the prover always executes the same strategy
with the same running time. In this case we can use a “mixed” strategy for
verification:
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– The Verifier pays the Prover only after k executions. Each execution is verified
as above (with nc repetitions);

– Additionally the Verifier uses the “check by re-execution” (from Sect. 4.4)
strategy every k executions (verifiying one execution by recomputing it);

– The Verifier pays R if all the checks are satisfied, 0 otherwise;
– The Verifier’s complexity is O(knc log n + n log n) = o(kn log n) – the latter

being the complexity of computing k instances.

Notice that there are many plausible ways to assume that the expected cost C̃
remains the same through the k + 1 proofs, for example by assuming that the
Prover can be “resetted” at the beginning of each execution and made oblivious
of the previous interactions.

7 Conclusion

Rational Proofs are a promising approach to the problem of verifying computa-
tions in a rational model, where the prover is not malicious, but only motivated
by the goal of maximizing its utility function. We showed that Rational Proofs
do not satisfy basic compositional properties in the case where a large number
of “computation problems” are outsourced, e.g. volunteered computations. We
showed that a “fast” incorrect answer is more remunerable for the prover, by
allowing him to solve more problems and collect more rewards. We presented
an enhanced definition of Rational Proofs that removes the economic incentive
for this strategy and we presented a protocol that achieves it for some uniform
bounded-depth circuits.

One thing to point out is that our protocol has two additional advantages:

– the honest Prover is always guaranteed a fixed reward R, as opposed to some
of the protocols in [1,2] where the reward is a random variable even for the
honest prover;

– Our protocol is the first example of a rational proof for arithmetic circuits.

Our work leaves many interesting research directions to explore:

– Is it possible to come up with a protocol that works for any bounded-depth
circuit, and not circuits with special “topological” conditions such as the ones
imposed by our results?

– Our results hold for “non-adaptive” prover strategies, though that seems more
a proof artifact to simplify the analysis, than a technical requirement. Is it
possible to lift that restriction?

– Are there other circuits which, like the FFT one, satisfy our notions and
requirements?

– What about rational proofs for arbitrary poly-time computations? Even if the
simpler stand-alone case?
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