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P V

Look, V, I know w such that 
R(w) holds.

In CP-ZK we prove R  
and we open a commitment
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Compression/ 
Fingerprinting Commit-ahead-of-time

commit

Sensitive 
DB

Public ML models

Proofs of 
correct training

Time

My “credentials”

Some proof
RBool(b, w)

b
W

RAlg(a, w)

∧

a

W+ +

Efficient Proof Scheme

Some other proof
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Some Applications

• Anonymous Credentials

• Blockchains:

• with privacy properties

• proofs on data posted on blockchains

• Anywhere data need to be referenced to (privately or succinctly)
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Succinct and Non-Interactive ZK

Why caring about the right setting if it’s a special case of the left one? Efficiency
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Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup 

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

• Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,…)

• Keygen(maxSize) -> srs_gen

• Specialize(srs_gen, R) -> srs_R

• Often also updatable (anyone can rerandomize srs_gen)



Lunar&Eclipse results from 109 feet: 
new ways to construct CP-SNARKs with 

a Universal SRS generically
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new ways to construct CP-SNARKs with 

a Universal SRS generically

But before giving more details, we will need more background…



Warm up—what parents never say: 



Warm up—what parents never say: 
Where do (CP-)SNARKs come from?



Warm up—what parents never say: 

?
π

?

Where do (CP-)SNARKs come from?



Warm up—what parents never say: 

?
π

?
Warning!  

Ensure kids under 12 are under adult supervision before showing next slide.

Where do (CP-)SNARKs come from?
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• Vector Commitments: 

• VC.Commit(v1,…,vn) -> com (short)


• VC.Open(com, J, (v1, …, vn)) -> prf_opn (J subset of {1,…,n})


• VC.Verify(com, J, (v_J)) -> 0/1

Information-theoretic 
Object Crypto primitive Compilation

Cryptographic 
Proof System+

PCP Vector Commitment Arguments



PCP to (Succinct) Interactive Arguments

Makes set of queries Q

Accepts if PCP(Q) satisfies some test 
AND if proof of opening is valid.
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PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

• Think PCPs but:

• Interactive (the verifier can sends challenges)

• “oracles”: not strings but polynomials

• Queries: algebraic properties of these polynomials

• For compilation: Vector Polynomial commitment



Roughly: 
- n: # MUL gates

- a: # ADD gates 
- m: # wires

*practical + focus is on O(1) proof size

What you get from these compilers
Practical* SNARKs with Universal SRS
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• So far: very high level picture of compilers to efficient SNARKs

• But what about efficient CP-SNARKs? Do they have such general compilers?

• Lunar and ECLIPSE introduce them.
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PHPs 
CP-SNARKs with 

USRS

PHPs 
with “decomposition” 

property 

Lunar Compiler

ECLIPSE* Compiler

*ECLIPSE: Enhanced CompiLIng method for Pedersen-committed zkSNARK Engines

PHPMarlin PHPPLONK PHPSonic

Instantiations
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ECLIPSE [ABC+21]

Time is in group operations. Above, n is roughly # of multiplication gates 

d

In practice the two family of systems show a tradeoff in verification time/proof size.
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Remainder of this talk

• Mostly: a high-level view of these compilers

• Roadmap:

• Compilers from PHP to SNARKs

• The tweak to allow compilation CP-SNARK (Lunar compiler)

• The “decomposition” property in ECLIPSE

• A couple comments on techniques



PHPs

Queries Q: 
General properties of polynomials 
(many checkable by evaluation in random point) 
 
Examples:

𝖽𝖾𝗀(p2(X)) < D𝖡𝗈𝗎𝗇𝖽

p1(β) + αp3(β)p4(β) = 0
(for α, β ←$ 𝔽)



Compiling to USRS SNARKs: Ingredients

• Compiler in Marlin/DARK/Lunar/PLONK


• Main tool Polynomial Commitments PC:


• A compressing commitment to polynomials


• Allows proving efficiently (and succinctly) in ZK:


• p(x) = y (evaluation)


•  deg(p) <= Dbound


• Others…
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Compiling to USRS SNARKs

Makes queries Q. 

Proves queries Q are satisfied by poly 
commitments c1,…,cN 
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The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

• Why is the SRS Universal?

• Because we can define 
SNARK.Setup(maxSize) ->  
 srs_gen := PC.Setup(maxPolyDeg)

• Where maxPolyDeg depends on 
maxSize
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Wait! 
These are commitments to polynomials “encoding”  

the witness. Can’t we just reuse them as commitments 
for commit and prove? 

No. Reusing them would break ZK.



Compiling to USRS CP-SNARKs

d



Compiling to USRS CP-SNARKs

d



Compiling to USRS CP-SNARKs

d

???



Compiling to USRS CP-SNARKs (Lunar compiler)

 says c1, …, cN

d



Compiling to USRS CP-SNARKs (Lunar compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.


w = WitExtr( p1(X)… pN(X) )



Compiling to USRS CP-SNARKs (Lunar compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.


w = WitExtr( p1(X)… pN(X) )

Specifically proves: 
opn([c]) = someSubset(w) 

 && opn(c_i) = p_i &&

w = WitExtr( p1(X)… pN(X) )



Compiling to USRS CP-SNARKs (ECLIPSE compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.


w = WitExtr( p1(X)… pN(X) )

Same-ish but assumes special property on WitExt:



Compiling to USRS CP-SNARKs (ECLIPSE compiler)

 says c1, …, cN

d
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The “Linking” component in Lunar

• Challenge: the opening of input commitments are 
“shifted” in some way inside w (encode through the 
transcript commitments) 

• Solution: Prove each c_1…c_ell can be expressed 
through appropriate decomposition

• The result is a pairing-based “linking” proof of roughly 
O(ell) size.  

d



The “Linking” component in ECLIPSE

• Several similarities with the approach in Lunar


• Differences: 

• Proves through an (amortized) Sigma-protocol a “squashing” of 
the input commitments


• This requires O(ell d) communication, but it’s then compressed 
through Compressed-Sigma tricks [AC20] to O(log(ell d))


• The resulting “squashed” C above is then used to show 
consistency in a similar fashion as in Lunar 

d
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Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

• A new constraint system R1CSLite (“simpler” version of R1CS)

• Allows to obtain more efficient SNARKs

• Concrete constructions of SNARKs

• Improving on the state of the art in several metrics

R1CSLite



Scary tables from Lunar (efficiency of constructions)

Some of the resulting SNARK construction and comparison

All PHP Constructions in Lunar



Open Questions

• Better asymptotics: 

•  O(\ell) is inherent in verification 
time, but can we achieve constant 
proof size? 


• Maybe with one-level of 
(specialised) recursion?


• Different techniques for linking 
and/or finding other applications 
for them.

ECLIPSE [ABC+21]

Future? O(1) O(ℓ)



Thanks!

https://ia.cr/2020/1069 On eprint soon!


