
Matteo Campanelli @ AU Crypto Summer Day #1 2021

Lunar (and) Eclipse:
Commit-and-Prove SNARKs with Universal SRS

Lunar is a joint work with: Dario Fiore, Antonio Faonio, Anaïs Querol ECLIPSE is a joint work with: Diego F. Aranha, Emil Madsen Bennedsen, Chaya Ganesh, Claudio Orlandi, Akira Takahashi

ZK
P V

“Trusting properties claimed
by someone else on data that

you have not seen”

ZK

. . .

P V

“Trusting properties claimed
by someone else on data that

you have not seen”

ZK

. . .

P V

Look, V, I know w such that
R(w) holds.

“Trusting properties claimed
by someone else on data that

you have not seen”

Commit-and-Prove (CP) ZK

P V

“Trusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed

to”

Commit-and-Prove (CP) ZK
w

P V

“Trusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed

to”

Commit-and-Prove (CP) ZK
w

. . .

P V

“Trusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed

to”

Commit-and-Prove (CP) ZK
w

. . .

P V

Look, V, I know w such that
R(w) holds.

“Trusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed

to”

Commit-and-Prove (CP) ZK
w

And, by the way,
opens W

. . .

P V

Look, V, I know w such that
R(w) holds.

“Trusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed

to”

Commit-and-Prove (CP) ZK
w

And, by the way,
opens W

. . .

P V

Look, V, I know w such that
R(w) holds.

In CP-ZK we prove R  
and we open a commitment

“Trusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed

to”

Motivation for CP

Motivation for CP
Compression/
Fingerprinting

Motivation for CP
Compression/
Fingerprinting

Sensitive
DB

Motivation for CP
Compression/
Fingerprinting

Sensitive
DB

Public ML models

Motivation for CP
Compression/
Fingerprinting

commit

Sensitive
DB

Public ML models

Motivation for CP
Compression/
Fingerprinting

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Motivation for CP
Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Motivation for CP
Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Time

My “credentials”

Motivation for CP
Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Time

My “credentials”

Some proof

Motivation for CP
Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Time

My “credentials”

Some proof

Some other proof

Motivation for CP
Modular/efficient

composition of proofs 
[AGM18,CFQ19]

Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Time

My “credentials”

Some proof

Some other proof

Motivation for CP
Modular/efficient

composition of proofs 
[AGM18,CFQ19]

Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Time

My “credentials”

Some proof
RBool(b, w)

b
W

RAlg(a, w)

∧

a

Some other proof

Motivation for CP
Modular/efficient

composition of proofs 
[AGM18,CFQ19]

Compression/
Fingerprinting Commit-ahead-of-time

commit

Sensitive
DB

Public ML models

Proofs of
correct training

Time

My “credentials”

Some proof
RBool(b, w)

b
W

RAlg(a, w)

∧

a

W+ +

Efficient Proof Scheme

Some other proof

Some Applications

Some Applications

• Anonymous Credentials

Some Applications

• Anonymous Credentials

• Blockchains:

Some Applications

• Anonymous Credentials

• Blockchains:

• with privacy properties

Some Applications

• Anonymous Credentials

• Blockchains:

• with privacy properties

• proofs on data posted on blockchains

Some Applications

• Anonymous Credentials

• Blockchains:

• with privacy properties

• proofs on data posted on blockchains

• Anywhere data need to be referenced to (privately or succinctly)

Our Focus: (CP-)SNARKs
Succinct and Non-Interactive ZK

Our Focus: (CP-)SNARKs
Succinct and Non-Interactive ZK

Our Focus: (CP-)SNARKs
Succinct and Non-Interactive ZK

Why caring about the right setting if it’s a special case of the left one?

Our Focus: (CP-)SNARKs
Succinct and Non-Interactive ZK

Why caring about the right setting if it’s a special case of the left one? Efficiency

Trust Models in (CP)-SNARKs

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

• Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,…)

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

• Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,…)

• Keygen(maxSize) -> srs_gen

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

• Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,…)

• Keygen(maxSize) -> srs_gen

• Specialize(srs_gen, R) -> srs_R

Trust Models in (CP)-SNARKs

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

• Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,…)

• Keygen(maxSize) -> srs_gen

• Specialize(srs_gen, R) -> srs_R

• Often also updatable (anyone can rerandomize srs_gen)

Lunar&Eclipse results from 109 feet:
new ways to construct CP-SNARKs with

a Universal SRS generically

Lunar&Eclipse results from 109 feet:
new ways to construct CP-SNARKs with

a Universal SRS generically

But before giving more details, we will need more background…

Warm up—what parents never say:

Warm up—what parents never say:
Where do (CP-)SNARKs come from?

Warm up—what parents never say:

?
π

?

Where do (CP-)SNARKs come from?

Warm up—what parents never say:

?
π

?
Warning!  

Ensure kids under 12 are under adult supervision before showing next slide.

Where do (CP-)SNARKs come from?

The truth about where SNARKs come from

Compilers from information-theoretic objects!

The truth about where SNARKs come from

Compilers from information-theoretic objects!

The truth about where SNARKs come from

Information-theoretic
Object Crypto primitive Compilation

Cryptographic
Proof System+

Compilers from information-theoretic objects!

Example: PCPs
Probabilistically Checkable Proofs

Example: PCPs
Probabilistically Checkable Proofs

Makes set of queries Q 
(points in the PCP)

Accepts if PCP(Q) satisfies some test.

Example: PCPs
Probabilistically Checkable Proofs

PCP to (Succinct) Interactive Arguments

Information-theoretic
Object Crypto primitive Compilation

Cryptographic
Proof System+

PCP Vector Commitment Arguments

PCP to (Succinct) Interactive Arguments

• Vector Commitments:

• VC.Commit(v1,…,vn) -> com (short)

• VC.Open(com, J, (v1, …, vn)) -> prf_opn (J subset of {1,…,n})

• VC.Verify(com, J, (v_J)) -> 0/1

Information-theoretic
Object Crypto primitive Compilation

Cryptographic
Proof System+

PCP Vector Commitment Arguments

PCP to (Succinct) Interactive Arguments

Makes set of queries Q

Accepts if PCP(Q) satisfies some test 
AND if proof of opening is valid.

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

• Think PCPs but:

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

• Think PCPs but:

• Interactive (the verifier can sends challenges)

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

• Think PCPs but:

• Interactive (the verifier can sends challenges)

• “oracles”: not strings but polynomials

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

• Think PCPs but:

• Interactive (the verifier can sends challenges)

• “oracles”: not strings but polynomials

• Queries: algebraic properties of these polynomials

PCP PHP: an idealization for USRS SNARKs
Polynomially Holographic Proofs

• PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]…

• Think PCPs but:

• Interactive (the verifier can sends challenges)

• “oracles”: not strings but polynomials

• Queries: algebraic properties of these polynomials

• For compilation: Vector Polynomial commitment

Roughly: 
- n: # MUL gates

- a: # ADD gates 
- m: # wires

*practical + focus is on O(1) proof size

What you get from these compilers
Practical* SNARKs with Universal SRS

Compilers for CP-SNARKs

Compilers for CP-SNARKs

• So far: very high level picture of compilers to efficient SNARKs

Compilers for CP-SNARKs

• So far: very high level picture of compilers to efficient SNARKs

• But what about efficient CP-SNARKs? Do they have such general compilers?

Compilers for CP-SNARKs

• So far: very high level picture of compilers to efficient SNARKs

• But what about efficient CP-SNARKs? Do they have such general compilers?

• Lunar and ECLIPSE introduce them.

Lunar & ECLIPSE: compilers to USRS CP-SNARKs

PHPs
CP-SNARKs with

USRS

PHPs
with “decomposition”

property

Lunar Compiler

ECLIPSE* Compiler

*ECLIPSE: Enhanced CompiLIng method for Pedersen-committed zkSNARK Engines

Lunar & ECLIPSE: compilers to USRS CP-SNARKs

PHPs
CP-SNARKs with

USRS

PHPs
with “decomposition”

property

Lunar Compiler

ECLIPSE* Compiler

*ECLIPSE: Enhanced CompiLIng method for Pedersen-committed zkSNARK Engines

PHPMarlin PHPPLONK PHPSonic

Instantiations

Resulting USRS CP-SNARKs: Efficiency

ECLIPSE [ABC+21]

Time is in group operations. Above, n is roughly # of multiplication gates

d

Resulting USRS CP-SNARKs: Efficiency

ECLIPSE [ABC+21]

Time is in group operations. Above, n is roughly # of multiplication gates

d

In practice the two family of systems show a tradeoff in verification time/proof size.

Remainder of this talk

Remainder of this talk

• Mostly: a high-level view of these compilers

Remainder of this talk

• Mostly: a high-level view of these compilers

• Roadmap:

Remainder of this talk

• Mostly: a high-level view of these compilers

• Roadmap:

• Compilers from PHP to SNARKs

Remainder of this talk

• Mostly: a high-level view of these compilers

• Roadmap:

• Compilers from PHP to SNARKs

• The tweak to allow compilation CP-SNARK (Lunar compiler)

Remainder of this talk

• Mostly: a high-level view of these compilers

• Roadmap:

• Compilers from PHP to SNARKs

• The tweak to allow compilation CP-SNARK (Lunar compiler)

• The “decomposition” property in ECLIPSE

Remainder of this talk

• Mostly: a high-level view of these compilers

• Roadmap:

• Compilers from PHP to SNARKs

• The tweak to allow compilation CP-SNARK (Lunar compiler)

• The “decomposition” property in ECLIPSE

• A couple comments on techniques

PHPs

Queries Q:
General properties of polynomials 
(many checkable by evaluation in random point) 
 
Examples:

𝖽𝖾𝗀(p2(X)) < D𝖡𝗈𝗎𝗇𝖽

p1(β) + αp3(β)p4(β) = 0
(for α, β ←$ 𝔽)

Compiling to USRS SNARKs: Ingredients

• Compiler in Marlin/DARK/Lunar/PLONK

• Main tool Polynomial Commitments PC:

• A compressing commitment to polynomials

• Allows proving efficiently (and succinctly) in ZK:

• p(x) = y (evaluation)

• deg(p) <= Dbound

• Others…

Compiling to USRS SNARKs

Compiling to USRS SNARKs

Compiling to USRS SNARKs

Makes queries Q.

Proves queries Q are satisfied by poly
commitments c1,…,cN

The Resulting USRS SNARKs

The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

• Why is the SRS Universal?

The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

• Why is the SRS Universal?

• Because we can define
SNARK.Setup(maxSize) ->
 srs_gen := PC.Setup(maxPolyDeg)

The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

• Why is the SRS Universal?

• Because we can define
SNARK.Setup(maxSize) ->
 srs_gen := PC.Setup(maxPolyDeg)

• Where maxPolyDeg depends on
maxSize

But that was SNARKs. How ‘bout CP-SNARKs?

d

But that was SNARKs. How ‘bout CP-SNARKs?

d

Wait!
These are commitments to polynomials “encoding”  

the witness. Can’t we just reuse them as commitments 
for commit and prove?

But that was SNARKs. How ‘bout CP-SNARKs?

d

Wait!
These are commitments to polynomials “encoding”  

the witness. Can’t we just reuse them as commitments 
for commit and prove?

No. Reusing them would break ZK.

Compiling to USRS CP-SNARKs

d

Compiling to USRS CP-SNARKs

d

Compiling to USRS CP-SNARKs

d

???

Compiling to USRS CP-SNARKs (Lunar compiler)

 says c1, …, cN

d

Compiling to USRS CP-SNARKs (Lunar compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.

w = WitExtr(p1(X)… pN(X))

Compiling to USRS CP-SNARKs (Lunar compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.

w = WitExtr(p1(X)… pN(X))

Specifically proves: 
opn([c]) = someSubset(w) 

 && opn(c_i) = p_i &&

w = WitExtr(p1(X)… pN(X))

Compiling to USRS CP-SNARKs (ECLIPSE compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.

w = WitExtr(p1(X)… pN(X))

Same-ish but assumes special property on WitExt:

Compiling to USRS CP-SNARKs (ECLIPSE compiler)

 says c1, …, cN

d

Assume “special extractability”: 
there exists WitExtr s.t.

w = WitExtr(p1(X)… pN(X))

Same-ish but assumes special property on WitExt:

Specifically proves: 
opn([c]) = someSubset(w) 

 && opn(c_i) = p_i &&

w = WitExtr(p1(X)… pN(X))

The “Linking” component in Lunar

d

The “Linking” component in Lunar

• Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the
transcript commitments)

d

The “Linking” component in Lunar

• Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the
transcript commitments)

• Solution: Prove each c_1…c_ell can be expressed
through appropriate decomposition d

The “Linking” component in Lunar

• Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the
transcript commitments)

• Solution: Prove each c_1…c_ell can be expressed
through appropriate decomposition

• The result is a pairing-based “linking” proof of roughly
O(ell) size.

d

The “Linking” component in ECLIPSE

• Several similarities with the approach in Lunar

• Differences:

• Proves through an (amortized) Sigma-protocol a “squashing” of
the input commitments

• This requires O(ell d) communication, but it’s then compressed
through Compressed-Sigma tricks [AC20] to O(log(ell d))

• The resulting “squashed” C above is then used to show
consistency in a similar fashion as in Lunar

d

Additional Results in Lunar

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

• A new constraint system R1CSLite (“simpler” version of R1CS)

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

• A new constraint system R1CSLite (“simpler” version of R1CS)
R1CSLite

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

• A new constraint system R1CSLite (“simpler” version of R1CS)

• Allows to obtain more efficient SNARKs
R1CSLite

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

• A new constraint system R1CSLite (“simpler” version of R1CS)

• Allows to obtain more efficient SNARKs

• Concrete constructions of SNARKs

R1CSLite

Additional Results in Lunar

• A framework for polynomially holographic proofs (PHPs)

• Includes previous AHP/ILDPs/PIOPs as special cases

• A new constraint system R1CSLite (“simpler” version of R1CS)

• Allows to obtain more efficient SNARKs

• Concrete constructions of SNARKs

• Improving on the state of the art in several metrics

R1CSLite

Scary tables from Lunar (efficiency of constructions)

Some of the resulting SNARK construction and comparison

All PHP Constructions in Lunar

Open Questions

• Better asymptotics:

• O(\ell) is inherent in verification
time, but can we achieve constant
proof size?

• Maybe with one-level of
(specialised) recursion?

• Different techniques for linking
and/or finding other applications
for them.

ECLIPSE [ABC+21]

Future? O(1) O(ℓ)

Thanks!

https://ia.cr/2020/1069 On eprint soon!

