Lunar .. Eclipse:

Commit-and-Prove SNARKs with Universal SRS

Matteo Campanelli @ AU Crypto Summer Day #1 2021

Lunar is a joint work with: Dario Fiore, Antonio Faonio, Anais Querol ECLIPSE is a joint work with: Diego F. Aranha, Emil Madsen Bennedsen, Chaya Ganesh, Claudio Orlandi, Akira Takahashi

“Irusting properties claimed
by someone else on data that
P \'/ you have not seen”

“Irusting properties claimed
by someone else on data that
P \'/ you have not seen”

Look, V, | know w such that
R(w) holds.

“Irusting properties claimed
by someone else on data that
you have not seen”

Commit-and-Prove (CP) ZK

“Irusting properties
claimed by someone else
P Vv on data that you have not
seen
y\/t\(‘ \r7 but that can be pointed

/ . to
§\TJ\TJ§

Commit-and-Prove (CP) ZK

“Irusting properties
claimed by someone else
on data that you have not

seen
but that can be pointed
to”

»

s
Vi

Commit-and-Prove (CP) ZK

“Irusting properties
w .
l claimed by someone else
P = V on data that you have not

seen
y\/t\(‘ 77 /\ but that can be pointed
§ y 4 _\ g \ tou
U\

—_—

Commit-and-Prove (CP) ZK

“Irusting properties
w .
l claimed by someone else
P = V on data that you have not

seen
y\/t\(‘ \r7 /\ but that can be pointed
§ / 4 _‘ g \ to”
U\ ‘,

\

—_—

Look, V, | know w such that
R(w) holds.

Commit-and-Prove (CP) ZK

“Irusting properties
w .
l claimed by someone else
P = V on data that you have not

seen
y\/t\(‘ \r7 /\ but that can be pointed
§ / 4 _‘ g \ to”
U\ ‘,

\

—_—

Look, V, | know w such that
R(w) holds.

And, by the way,
N7 opens \nf

Commit-and-Prove (CP) ZK

“Irusting properties
w .
l claimed by someone else
P = V on data that you have not

seen
y\/t\(‘ \r7 /\ but that can be pointed
§ / 4 _‘ g \ to”
U\ ‘,

\

—_—

Look, V, | know w such that In CP-ZK we prove R

R(w) holds. .
(W) holds and we open a commitment
And, by the way,

n opens , W

Motivation for CP

Motivation for CP

Compression/
Fingerprinting

Motivation for CP

Compression/
Fingerprinting

+

A A
AAh
AAh

Motivation for CP

Compression/
Fingerprinting

+

A A
AAh
AAh
A

Sensitive
DB

N

Public ML models

Motivation for CP

Compression/
Fingerprinting

+

A A
A A
AAh
A

commit
- N

N

Sensitive
DB

Public ML models

Motivation for CP

Compression/
Fingerprinting
+

A A

A A

A A

e commit
- d

Proofs of

Sensitive
DB
correct training
IR 303t

Public ML models

Motivation for CP

Compression/

: . . Commit-ahead-of-time
Fingerprinting

+

A A
AAh
AAh
A

N

Sensitive
DB

commit
- N

Proofs of
correct training

Public ML models

Motivation for CP

Compression/

: . . Commit-ahead-of-time
Fingerprinting

+

A A
A A
AAh
A

commit V] “;redentials”
t > ’

N

Sensitive
DB

Proofs of
correct training

. Time
Public ML models v

Motivation for CP

Compression/

: . . Commit-ahead-of-time
Fingerprinting

+

A A
A A
AAh
A

commit V] “;redentials”
t > ’

N

Sensitive
DB

Sroofsof N\ e Some proof

correct training

. Time
Public ML models v

Motivation for CP

Compression/

: . . Commit-ahead-of-time
Fingerprinting

+

A A
A A
AAh
A

commit V] “;redentials”
t > ’

N

Sensitive
DB

Sroofsof N\ e Some proof

correct training

.......................... SOme Other pI’OOf

. Time
Public ML models v

Motivation for CP

Compression/ Commit-ahead-of-time Modular/efficient

Fingerprinting composition of proofs
[AGM18,CFQ19]
+

A A
AAh
AAh
A

commit M ials”
credentials
E > M' Y

N

Sensitive
DB

oroofs of N e— Some proof

correct training

.......................... SOme Other pI’OOf

Public ML models v

Motivation for CP

Compression/ Commit-ahead-of-time Modular/efficient
Fingerprinting composition of proofs
[AGM18,CFQ19]
+
T
T
e e
- : t COmmi’(> S My “credentials”
Sensitive
DB oroofsof N\ e Some proof

correct training

.......................... SOme Other pI’OOf

Tim
Public ML models Ime

Motivation for CP

Compression/ Commit-ahead-of-time Modular/efficient
Fingerprinting composition of proofs
[AGM18,CFQ19]
+
TI11
T
EEEE 0 e =5
: k l : . Commit» S My “credentials”
Sensitive
DB oroofsof N\ e Some proof

correct training

.......................... SOme Other pI’OOf

Public ML models M

< Efficient Proof Scheme

Some Applications

Some Applications

e Anonymous Credentials

Some Applications

e Anonymous Credentials

e Blockchains:

Some Applications

e Anonymous Credentials

e Blockchains:

e With privacy properties

Some Applications

e Anonymous Credentials

e Blockchains:
e With privacy properties

e proofs on data posted on blockchains

Some Applications

e Anonymous Credentials

e Blockchains:
e With privacy properties

e proofs on data posted on blockchains

e Anywhere data need to be referenced to (privately or succinctly)

Our Focus: (CP-)SNARKs

Succinct and Non-Interactive ZK

P T v
/_\A Vﬁg(xfﬂ

R
X s
222NN\ I\

Our Focus: (CP-)SNARKs

Succinct and Non-Interactive ZK

N D P
i T

\hﬁtS (X\"u'

— _______}

s
222NN\ I\

Our Focus: (CP-)SNARKs

Succinct and Non-Interactive ZK

Why caring about the right setting if it’s a special case of the left one?

Our Focus: (CP-)SNARKs

Succinct and Non-Interactive ZK

Why caring about the right setting if it’s a special case of the left one? Efficiency

Trust Models in (CP)-SNARKSs

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)

* no trusted setup

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup

* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup
* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)

 Keygen(R) -> srs_R

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup

* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)
 Keygen(R) -> srs_R

 Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK;,...)

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup

* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)
 Keygen(R) -> srs_R

 Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK;,...)

» Keygen(maxsSize) -> srs_gen

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup

* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)
 Keygen(R) -> srs_R

 Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK;,...)

» Keygen(maxsSize) -> srs_gen

» Specialize(srs_gen, R) -> srs_R

Trust Models in (CP)-SNARKSs

 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup

* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)
 Keygen(R) -> srs_R

 Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK;,...)

» Keygen(maxsSize) -> srs_gen
» Specialize(srs_gen, R) -> srs_R

» Often also updatable (anyone can rerandomize srs_gen)

Lunar&Eclipse results from 10° feet:

new ways to construct CP-SNARIKSs with
a Universal SRS generically

Lunar&Eclipse results from 10° feet:

new ways to construct CP-SNARIKSs with
a Universal SRS generically

But before giving more details, we will need more background...

Warm up—what parents never say:

Warm up—what parents never say:
Where do (CP-)SNARKs come from?

Warm up—what parents never say:
Where do (CP-)SNARKs come from?

Warm up—what parents never say:
Where do (CP-)SNARKs come from?

Warning!
Ensure kids under 12 are under adult supervision before showing next slide.

The truth about where SNARKs come from

Compilers from information-theoretic objects!

The truth about where SNARKs come from

Compilers from information-theoretic objects!

The truth about where SNARKs come from

Compilers from information-theoretic objects!

Information-theoretic

L o Cryptographic
Object Crypto primitive Compilation Proof System

Example: PCPs

Probabilistically Checkable Proofs

Example: PCPs

Probabilistically Checkable Proofs

Example: PCPs

Probabilistically Checkable Proofs

/P?egx\\w\ B é‘ >

Makes set of queries Q
(points in the PCP)

Accepts if PCP(Q) satisfies some test.

PCP to (Succinct) Interactive Arguments

Information-theoretic

L Cryptographic
Obiject Crypto primitive Compilation ryptograp

Proof System

PCP Vector Commitment Arguments

PCP to (Succinct) Interactive Arguments

Information-theoretic

L Cryptographic
Obiject Crypto primitive Compilation ryptograp

Proof System

PCP Vector Commitment Arguments

* Vector Commitments:
 VC.Commit(vl,...,vn) -> com (short)
 VC.Open(com, J, (v1, ..., vn)) -> prf_opn (J subset of {1,...,n})
« VC.Verify(com, J, (v_J)) -> 0/1

PCP to (Succinct) Interactive Arguments

Makes set of queries Q

?@?@B \ ”qﬁ)[\i (Q> Accepts if PCP(Q) satisfies some test

;5 AND if proof of opening is valid.

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...
 Think PCPs but:

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...
 Think PCPs but:

* Interactive (the verifier can sends challenges)

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...
 Think PCPs but:
* Interactive (the verifier can sends challenges)

e “oracles”: not strings but polynomials

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...
* Think PCPs but:

* Interactive (the verifier can sends challenges)

e “oracles”: not strings but polynomials

* Queries: algebraic properties of these polynomials

PCP PHP: an idealization for USRS SNARKSs

Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...
* Think PCPs but:

* Interactive (the verifier can sends challenges)

e “oracles”: not strings but polynomials

* Queries: algebraic properties of these polynomials

* For compilation: Veeter Polynomial commitment

What you get from these compilers
Practical* SNARKs with Universal SRS

JASNARK size time |
Ivkr| || Prove Verify
. (=1 — 20 273n L
Sonic 7 pairings
16 Go 3 — —
' F — 16 O(mlogm) O(£+logm)
G 12 13 14n+8:
MARLIN : em 2 pairings
po] o2 2 N
' F — 8 O(mlogm) O(L+logm)
| G 8 7 I11n+1la
PLONK ° | e lia 2 pairings
(small proof) Go 1 — —
128 F — 7 O((n+a)log(n+a)) O(¢+log(n+a))
; o
PLONK ! 59 Intda 2 pairings
(fast prover) (o 1 — —
128 F — 7 O((n+a)log(n+a)) O(¢+log(n+a))

Roughly:

- n: # MUL gates
- a: # ADD gates
- m: # wires

*practical + focus is on O(1) proof size

Compilers for CP-SNARKSs

Compilers for CP-SNARKSs

* So far: very high level picture of compilers to efficient SNARKs

Compilers for CP-SNARKSs

* So far: very high level picture of compilers to efficient SNARKs

 But what about efficient CP-SNARKs? Do they have such general compilers?

Compilers for CP-SNARKSs

* So far: very high level picture of compilers to efficient SNARKs

 But what about efficient CP-SNARKs? Do they have such general compilers?

e LLunar and ECLIPSE introduce them.

Lunar & ECLIPSE: compilers to USRS CP-SNARKs

Lunar Compiler

CP-SNARKSs with
USRS

I BEAT THE RUSSIANS.. |14 | 1 EVEN BEAT THAT STUPID

I BEAT EVERYBOPY... /13 | CAT WHOLIVES NEXT DOOR!
~_ h

|

}

"

PHPs

with “decomposition”
property

ECLIPSE* Compiler

*ECLIPSE: Enhanced CompiLlng method for Pedersen-committed zkSNARK Engines

Lunar & ECLIPSE: compilers to USRS CP-SNARKs

PHPiite1x PHPRrR1cs1x PHPiite PHPRr1cs1
PHPiite2x PHPRrics2x ~ PHPjiter PHPRr1cs2

Instantiations

e

Lunar Compiler

CP-SNARKSs with
USRS

PHPs

with “decomposition”
property

ECLIPSE* Compiler

PHPMarin ~ PHPpLonk PHPsonic

*ECLIPSE: Enhanced CompiLlng method for Pedersen-committed zkSNARK Engines

I DIDIT! I'M THE FIRST
BEAGLE ON THE MOON !

1 BEAT THE RUSSIANS..
1 BEAT EVERYBOPY...

"‘TO""'

I EVEN BEAT THAT STUPID
CA‘_f_ WHO LIVES NEXT DOOR !

Resulting USRS CP-SNARKS: Efficiency

|77 Prove (time) Verify (time)

ECLIPSE [ABC+21]

Lunar [CFF™20] -
LegoUAC [CFQ19] O (£log*(n) O(n)+ £ -0 (d) O (£log*(n)

Time is in group operations. Above, n is roughly # of multiplication gates

Resulting USRS CP-SNARKS: Efficiency

|77 Prove (time) Verify (time)

ECLIPSE [ABC+21]

Lunar [CFF™20]
LegoUAC [CFQ19]

Time is in group operations. Above, n is roughly # of multiplication gates

In practice the two family of systems show a tradeoff in verification time/proof size.

Remainder of this talk

Remainder of this talk

 Mostly: a high-level view of these compilers

Remainder of this talk

 Mostly: a high-level view of these compilers

« Roadmap:

Remainder of this talk

 Mostly: a high-level view of these compilers

« Roadmap:

 Compilers from PHP to SNARKSs

Remainder of this talk

 Mostly: a high-level view of these compilers
« Roadmap:

 Compilers from PHP to SNARKSs

 The tweak to allow compilation CP-SNARK (Lunar compiler)

Remainder of this talk

 Mostly: a high-level view of these compilers
« Roadmap:
 Compilers from PHP to SNARKSs
 The tweak to allow compilation CP-SNARK (Lunar compiler)

 The “decomposition” property in ECLIPSE

Remainder of this talk

 Mostly: a high-level view of these compilers

« Roadmap:
 Compilers from PHP to SNARKSs
 The tweak to allow compilation CP-SNARK (Lunar compiler)
 The “decomposition” property in ECLIPSE

* A couple comments on techniques

PHPs

\ /‘hédﬂj o | Pu O ’
4P A
P (o) VG
) Queries Q:
_ j | General properties of polynomials

(many checkable by evaluation in random point)

| | / Examples:
- deg(pZ(X)) < DBound

p1(D) + ap;(P)p,(p) =0
(for a, p < [F)

Compiling to USRS SNARKSs: Ingredients

 Compiler in Marlin/DARK/Lunar/PLONK
 Main tool Polynomial Commitments PC:
A compressing commitment to polynomials
* Allows proving efficiently (and succinctly) in ZK:
* p(X) =y (evaluation)
* deg(p) <= Dbound
* Others...

Compiling to USRS SNARKSs

ﬁ - ARQ@}

Compiling to USRS SNARKSs

e

Compiling to USRS SNARKSs

>
AM?CJQOMMTL (F (X}\
h GO
Makes queries Q.
TPQ% Proves queries Q are satisfied by poly

&)) commitments c1,...,cN

The Resulting USRS SNARKSs

S

The Resulting USRS SNARKSs

 Use Fiat-Shamir for non-interaction P (xow)

SANA

The Resulting USRS SNARKSs

» Use Fiat-Shamir for non-interaction P (o
 Why is the SRS Universal? @m@fm’”“@x)) S
o PC. Copmmit (F“ (XB\
_ o,

The Resulting USRS SNARKSs

» Use Fiat-Shamir for non-interaction 7"()
* Why is the SRS Universal? @) R bonnt (1) D
 Because we can define
SNARK.Setup(maxSize) -> o—3C-Commit (3, (x}\
srs gen := PC.Setup(maxPolyDeg) Y,
___pady

The Resulting USRS SNARKSs

Arg

» Use Fiat-Shamir for non-interaction P (o
* Why is the SRS Universal? @) R bonnt (1) D

e Because we can define

SNARK.Setup(maxSize) -> o—3C-Commit (3, (x}\
srs gen := PC.Setup(maxPolyDeg) - ()

 Where maxPolyDeg depends on
maxSize g

But that was SNARKs. How ‘bout CP-SNARKSs?

R P Se
%///Af‘*’(k “{l @« Lot () 5 b
= "ovems To 6 DC. Coprit (F (XB\
&
4

But that was SNARKs. How ‘bout CP-SNARKSs?

—~ ’R - :PA;LQ (yi\i\ \)Au, @>

X N %
~—— —_—r Q) o PC.C m%/ XB
77 i S QT lnnt () @
2 . . -
. ’ . d
[eaf oo 1!
i I
= OP&eEMNS o
d—FC . Copmpit (}N (XB\
(| @ ~7
Wait!
These are commitments to polynomials “encoding” Tpi‘ﬂj
the witness. Can’t we just reuse them as commitments &) >

for commit and prove?

But that was SNARKs. How ‘bout CP-SNARKSs?

—~ R - ?Am(y\&\ | \),49.9@3

X N %
~—— —_——re e,) o PC.C MJL/ X)
2 W X @ . Pi() (@) .
- | |
. ’ . d
[eaf e 1!
i I
= ©OPEMNS o
70 Comumit (3, (@\
(| @ ~7
Wait!
These are commitments to polynomials “encoding” TPD%
the witness. Can’t we just reuse them as commitments | &) >

for commit and prove?
No. Reusing them would break ZK.

Compiling to USRS CP-SNARKSs

3 (] \©@>
(e
X e Arg .
VTN Y P OE

Compiling to USRS CP-SNARKSs

- . <E\\@c>
R ¢ =
Arsg Y Arg £
X g w P () > ¢
W/////‘ E.\u\\\\\\\\”.. &[o
A @ Lot (:6) 2
EARR T *
= 'oPems To
) ¢—PC- Copmpt (FN(XB\
&)

— 7

Compiling to USRS CP-SNARKSs

(Tl o, =
. E) »
’R Ang S " 6&5
3 P P (y\\w\
................ . -
7 SN Dt o
E 1 ol |
512'\? 12|
.......... E ot e Ottt (0
) G
___ vy
“Q .

C iling to USRS CP-SNARKSs (Lunar compiler)
omp

(] \@C> -
_ . | -
h ¢ (\ S
P X W
SIS) (RS "\f(- m}
V/////' E W N @ e é : - jb
T A »
= 'opems To (Ca) 4— P - Copmpmit (FN (XB\
@
oy
1\@ §>

Compiling to USRS CP-SNARKSs (Lunar compiler)

- - < E,.\ \Qc:> -
R @l
AR (R ‘(\
e Py SO
2NN ,
v ___:l__ ' pr @ @?@ fmm% éié&} @
Ei‘ > o)CZ' 3>
= ! OPENS TO
M?C,Qomj' (FN (X}\
) &
Assume “special extractability”:
there exists WitExtr s.t.
w = WitExtr(p1(X)... pN(X))
‘T‘géj .

Compiling to USRS CP-SNARKSs (Lunar compiler)

<ﬁ,_/
- - E,.\ \@c> L
R (al
e &
X j ‘.W W A
2722 i AN -
[@) + PC.Commit (1) o
AR >
= ! OPENS TO
30 Commit (3. ()
) &
Assume “special extractability”:
there exists WitExtr s.t.
w = WitExtr(p1(X)... pN(X))
“Tgéj .

Specifically proves:
opn([c]) = someSubset(w) __Onk

&& opn(c_i) = p_i && L&y
w = WitExtr(p1(X)... pN(X)) i /

Compiling to USRS CP-SNARKSs (ECLIPSE compiler)

— (2l 2. B
6 6§

) + PC.C : | X)
@ m%éi() @ % Same-ish but assumes special property on WitExt:

R
o et
72 NN
1 o

\

Definition 9 (Decomposable witness-carrying polynomials). Let W be
an index set of witness-carrying polynomials of AHP. We say that polynomials

i I
= =NS o
= oves (pi,5(X))@,55ew of AHP are decomposable if there exists an efficient function
Decomp((pi,; (X)) jyew,I) = (p,g,lj) (X),pz(i-)(X))(i,j)ew such that it satisfies the

y, S— ?C . @Om‘{' (?N (XB\ following properties for any I C [n].
@ — Additive decomposition: p; ;(X) = p,fl]) (X) + pfj) (X) for (i,5) e W.
N

o —/ — Degree preserving: deg(pz(-,lj) (X)) and deg(pg,zj)(X)) are at most deg(p; ;(X))
- —_ or (1,7) € W.
Assume “special extractability”: or (4,3) €
there exists WitExtr s.t. — Non-overlapping: Let w = WitExt((pi,; (X)) (s jyew), wt) = WitExt((p;} (X)) ()
w = WitExtr(p1(X)... pN(X)) and w® = WitExt((p”) (X)) i jyew). Then
Tg;éj (Ws)ier = (Wz(l))iel (Wi)igr = (W§2))¢¢1 (ng))igz =0 (w,§2))z-e.r =0
* 1%
wk
" [@‘@‘@> SayS Cl’ 0 CN

Compiling to USRS CP-SNARKSs (ECLIPSE compiler)

Assume “special extractability’:

there exists WitExtr s.t.
w = WitExtr(p1(X)... pN(X))

Specifically proves:
opn([c]) = someSubset(w)
&& opn(c_i) = p_i &&

w = WitExtr(p1(X)... pN(X))

(2l 2.

{

_‘Pm (y\ 2
@ o~ VO Commt é’i(ﬂ) @)

Same-ish but assumes special property on WitExt:

3>
=3¢ Comanst (pu ()
a .
____pody
o A .
e @'ﬁk@@g says ¢,

L]
\»

Definition 9 (Decomposable witness-carrying polynomials). Let W be
an index set of witness-carrying polynomials of AHP. We say that polynomials
(pi,5(X))@,55ew of AHP are decomposable if there exists an efficient function

Decomp((pi,; (X)) jyew,I) = (p,El]) (X), p§ J)(X))(i,j)ew such that it satisfies the
following properties for any I C [n].

— Additive decomposition: p; ;(X) = pg]) (X) + pg])() for (i,7) € W.

— Degree preserving;: deg(pg J) (X)) and deg(pg J)(X)) are at most deg(p; ;(X))
for (i,5) e W.

— Non-overlapping: Let w = WitExt((p;,;j (X)) . jyew), wH) = WitEXt((PE,lj) (X)) (i,5)c

and w® = WitExt((p{>) (X)) (i jyew)- Then

(Wi)ier = (ng))iel (Wi)igr = (wﬁz))m (ngl))z’gél =0 (WZ@))iEI =0

The “Linking” component in Lunar

The “Linking” component in Lunar

e Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the
transcript commitments)

The “Linking” component in Lunar

e Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the

transcript commitments)

e Solution: Prove each c_1...c_ell can be expressed
through appropriate decomposition

The “Linking” component in Lunar

e Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the
transcript commitments)

e Solution: Prove each c_1...c_ell can be expressed
through appropriate decomposition

* The result is a pairing-based “linking” proof of roughly
O(ell) size.

The “Linking” component in ECLIPSE

* Several similarities with the approach in Lunar
* Differences:

* Proves through an (amortized) Sigma-protocol a “squashing” of
the input commitments

* This requires O(ell d) communication, but it’'s then compressed
through Compressed-Sigma tricks [AC20] to O(log(ell d))

* The resulting “squashed” C above is then used to show
consistency in a similar fashion as in Lunar

Additional Results In Lunar

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

* |Includes previous AHP/ILDPs/PIOPs as special cases

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)
* |Includes previous AHP/ILDPs/PIOPs as special cases

A new constraint system R1CSLite (“simpler” version of R1CS)

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

* Includes previous AHP/ILDPs/PIOPs as special cases Lot

b+ R-c¢c=0
aob=c
R1CSLite

A new constraint system R1CSLite (“simpler” version of R1CS) {

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

* Includes previous AHP/ILDPs/PIOPs as special cases Lot

b+ R-c¢c=0
aob=c
R1CSLite

A new constraint system R1CSLite (“simpler” version of R1CS) {

e Allows to obtain more efficient SNARKs

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

* Includes previous AHP/ILDPs/PIOPs as special cases Lot

b+ R-c¢c=0
aob=c
R1CSLite

A new constraint system R1CSLite (“simpler” version of R1CS) {
* Allows to obtain more efficient SNARKs

e Concrete constructions of SNARKs

Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

* Includes previous AHP/ILDPs/PIOPs as special cases Lot

b+ R-c¢c=0
aob=c
R1CSLite

A new constraint system R1CSLite (“simpler” version of R1CS) {
e Allows to obtain more efficient SNARKs
e Concrete constructions of SNARKSs

* Improving on the state of the art in several metrics

Scary tables from Lunar (efficiency of constructions)

JASNARK size | time |
srs| |ekr| |vkgr| || KeyGen Derive Prove Verify
. Gy 4N 36n — 20 4N 36m 273n o
Sonic 7 pairings
[@ Gy, AN — 3 — 4N — —
' F - — — 16 — O(mlogm) O(mlogm) O(£+logm)
Gy 3M 3m 12 13 3M 12m 14n+8m .
MARLIN 2 pairings
@ G 2 o 2 = - B oracles V checks
| F — — — 8 — O(mlogm) O(mlogm) O(f+logm) PHP degree RE P msgs proof length Yo d G d e
PLONK Gy 3N*3n+3a 8 7 3N~ 8n+8a lin+1la 5 vairi €6 egf\'f{-\'-}("1 eg-\'~{-’f:}(1)
(small proof) G, 1 — 1 — 1 - - pairngs PHP..; .3 2m 8 7 1 |n|+2m 2 2 2
|]278: F — — — 7 — O((n+a)log(n+a)) O((n+a)log(n+a)) O(f+log(n+a)) PHPiite1x Rk 21 5 7 1 |m +2m 2 2 3
* * PHPjie2 H.3| m 24 7 1 |m 2 2 2
PLONK Gy N* n4+a 8 9 N 8n+8a In+9a 2 pairings lite2 m ' i
(fast prover) Go 1 - 1 — 1 — — PHP it e0x Rkﬁ m 16 7 1 |m 2 2 3
28] F — — — 7 — O((n+ta)log(n+a)) O((n+a)log(n+a)) O(L+log(n+a)) PHP, . W4 3m 9 8 1 |n'|+4m 2 2 2
Gt M m — 10 M — 8n+3m . PHP <14 Rka 3m 6 8 1 |n'l+4m 2 2 3
_ 7 pairings
LunarLite Gy M — 27 — M 24m — PHP 12 U4 m™m 57 8 1 | 2 2 2
(this work) F — — — 2 — O(mlogm) O(mlogm) O(£+logm) PHP,; o, Rk‘ﬂ m 12 8 1 |In 9 2 3
GG M m — 11 M — In+3m 7 et PHP, .z M4 3m 12 8 1 |n 2 2 5
Lunarles Gy M — 60 — M 5Tm —
(fast & short) F — — — 2 — O(mlogm) O(mlogm) O(£+logm) All PHP Constructions in Lunar
Gy 3M 3m 12 12 3M 12m In+8m 9 1 airings
Lunarlecs G, 1 — 1 — 1 = — P 2
(shortvk) F — — — 5 — O(mlogm) O(mlogm) O(£+logm)

Some of the resulting SNARK construction and comparison

Open Questions

] |77 Prove (time) Verify (time)
* Better asymptotics: ECLIPSE [ABC+21] O (log(¢ - d)) OMn+4-d) O(-d) '
Lunar [CFF™20] O (¢) O(n+£-d) O (¢)
 O(\ell) is inherent in verification Future? o(1) O(¢)
time, but can we achieve constant
proof size?

 Maybe with one-level of
(specialised) recursion?

* Different techniques for linking
and/or finding other applications
for them.

https://ia.cr/2020/1069 On eprint soon!

Thanks!

