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Some Applications

e Anonymous Credentials

e Blockchains:
e With privacy properties

e proofs on data posted on blockchains

e Anywhere data need to be referenced to (privately or succinctly)
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Succinct and Non-Interactive ZK

Why caring about the right setting if it’s a special case of the left one? Efficiency
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 Transparent :-))) (Bulletproofs,Hyrax,DARK...)
* no trusted setup

* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)
 Keygen(R) -> srs_R

 Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK;,...)

» Keygen(maxsSize) -> srs_gen
» Specialize(srs_gen, R) -> srs_R

» Often also updatable (anyone can rerandomize srs_gen)
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new ways to construct CP-SNARIKSs with
a Universal SRS generically

But before giving more details, we will need more background...
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Warning!
Ensure kids under 12 are under adult supervision before showing next slide.
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Information-theoretic

L o Cryptographic
Object Crypto primitive Compilation Proof System
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Makes set of queries Q
(points in the PCP)

Accepts if PCP(Q) satisfies some test.
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Information-theoretic

L Cryptographic
Obiject Crypto primitive Compilation ryptograp

Proof System

PCP Vector Commitment Arguments

* Vector Commitments:
 VC.Commit(vl,...,vn) -> com (short)
 VC.Open(com, J, (v1, ..., vn)) -> prf_opn (J subset of {1,...,n})
« VC.Verify(com, J, (v_J)) -> 0/1



PCP to (Succinct) Interactive Arguments

Makes set of queries Q

?@?@B \ ”qﬁ)[\i (Q> Accepts if PCP(Q) satisfies some test

;5 AND if proof of opening is valid.
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Polynomially Holographic Proofs

 PHPs: close to AHPs [Marlin,Fractal]/ILDPs [PLONK]/PIOPs [DARK]...
* Think PCPs but:

* Interactive (the verifier can sends challenges)

e “oracles”: not strings but polynomials

* Queries: algebraic properties of these polynomials

* For compilation: Veeter Polynomial commitment



What you get from these compilers
Practical* SNARKs with Universal SRS

JASNARK size time |
Ivkr| || Prove Verify
. (=1 — 20 273n L
Sonic 7 pairings
16 Go 3 — —
' F — 16 O(mlogm) O(£+logm)
G 12 13 14n+8:
MARLIN : em 2 pairings
po] o2 2 N
' F — 8 O(mlogm) O(L+logm)
| G 8 7 I11n+1la
PLONK ° | e lia 2 pairings
(small proof) Go 1 — —
128 F — 7 O((n+a)log(n+a)) O(¢+log(n+a))
; o
PLONK ! 59 Intda 2 pairings
(fast prover) (o 1 — —
128 F — 7 O((n+a)log(n+a)) O(¢+log(n+a))

Roughly:

- n: # MUL gates
- a: # ADD gates
- m: # wires

*practical + focus is on O(1) proof size
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Compilers for CP-SNARKSs

* So far: very high level picture of compilers to efficient SNARKs

 But what about efficient CP-SNARKs? Do they have such general compilers?

e LLunar and ECLIPSE introduce them.



Lunar & ECLIPSE: compilers to USRS CP-SNARKs
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PHPiite1x PHPRrR1cs1x PHPiite PHPRr1cs1
PHPiite2x  PHPRrics2x ~ PHPjiter PHPRr1cs2

Instantiations

e

Lunar Compiler

CP-SNARKSs with
USRS

PHPs

with “decomposition”
property

ECLIPSE* Compiler

PHPMarin ~ PHPpLonk  PHPsonic

*ECLIPSE: Enhanced CompiLlng method for Pedersen-committed zkSNARK Engines

I DIDIT! I'M THE FIRST
BEAGLE ON THE MOON !

1 BEAT THE RUSSIANS..
1 BEAT EVERYBOPY...

"‘TO""'

I EVEN BEAT THAT STUPID
CA‘_f_ WHO LIVES NEXT DOOR !
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Resulting USRS CP-SNARKS: Efficiency

|77 Prove (time) Verify (time)

ECLIPSE [ABC+21]

Lunar [CFF™20]
LegoUAC [CFQ19]

Time is in group operations. Above, n is roughly # of multiplication gates

In practice the two family of systems show a tradeoff in verification time/proof size.



Remainder of this talk



Remainder of this talk

 Mostly: a high-level view of these compilers



Remainder of this talk

 Mostly: a high-level view of these compilers

« Roadmap:



Remainder of this talk

 Mostly: a high-level view of these compilers

« Roadmap:

 Compilers from PHP to SNARKSs



Remainder of this talk

 Mostly: a high-level view of these compilers
« Roadmap:

 Compilers from PHP to SNARKSs

 The tweak to allow compilation CP-SNARK (Lunar compiler)



Remainder of this talk

 Mostly: a high-level view of these compilers
« Roadmap:
 Compilers from PHP to SNARKSs
 The tweak to allow compilation CP-SNARK (Lunar compiler)

 The “decomposition” property in ECLIPSE



Remainder of this talk

 Mostly: a high-level view of these compilers

« Roadmap:
 Compilers from PHP to SNARKSs
 The tweak to allow compilation CP-SNARK (Lunar compiler)
 The “decomposition” property in ECLIPSE

* A couple comments on techniques



PHPs

\ /‘hédﬂj o | Pu O ’
4P A
P (o) VG
) Queries Q:
_ j | General properties of polynomials

(many checkable by evaluation in random point)

| | / Examples:
- deg(pZ(X)) < DBound

p1(D) + ap;(P)p,(p) =0
(for a, p < [F)




Compiling to USRS SNARKSs: Ingredients

 Compiler in Marlin/DARK/Lunar/PLONK
 Main tool Polynomial Commitments PC:
A compressing commitment to polynomials
* Allows proving efficiently (and succinctly) in ZK:
* p(X) =y (evaluation)
* deg(p) <= Dbound
* Others...
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Makes queries Q.
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Arg

» Use Fiat-Shamir for non-interaction P (o
* Why is the SRS Universal? @) R bonnt (1) D

e Because we can define

SNARK.Setup(maxSize) -> o—3C-Commit (3, (x}\
srs gen := PC.Setup(maxPolyDeg) - ()

 Where maxPolyDeg depends on
maxSize g
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But that was SNARKs. How ‘bout CP-SNARKSs?

—~ R - ?Am(y\&\ | \),49.9@3

X N %
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2 W X @ . Pi( ) (@) .
- | |
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[eaf e 1!
i I
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Wait!
These are commitments to polynomials “encoding” TPD%
the witness. Can’t we just reuse them as commitments | &) >

for commit and prove?
No. Reusing them would break ZK.
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C iling to USRS CP-SNARKSs (Lunar compiler)
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AR >
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) &
Assume “special extractability”:
there exists WitExtr s.t.
w = WitExtr( p1(X)... pN(X) )
“Tgéj .

Specifically proves:
opn([c]) = someSubset(w) __Onk

&& opn(c_i) = p_i && L&y
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Compiling to USRS CP-SNARKSs (ECLIPSE compiler)
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Definition 9 (Decomposable witness-carrying polynomials). Let W be
an index set of witness-carrying polynomials of AHP. We say that polynomials

i I
= =NS o
= oves (pi,5(X))@,55ew of AHP are decomposable if there exists an efficient function
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Compiling to USRS CP-SNARKSs (ECLIPSE compiler)

Assume “special extractability’:

there exists WitExtr s.t.
w = WitExtr( p1(X)... pN(X) )

Specifically proves:
opn([c]) = someSubset(w)
&& opn(c_i) = p_i &&

w = WitExtr( p1(X)... pN(X) )

(2l 2.

{

_‘Pm (y\ 2
@ o~ VO Commt é’i(ﬂ) @)

Same-ish but assumes special property on WitExt:

3>
=3¢ Comanst (pu ()
a .
____pody
o A .
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Definition 9 (Decomposable witness-carrying polynomials). Let W be
an index set of witness-carrying polynomials of AHP. We say that polynomials
(pi,5(X))@,55ew of AHP are decomposable if there exists an efficient function

Decomp((pi,; (X)) jyew,I) = (p,El]) (X), p§ J)(X))(i,j)ew such that it satisfies the
following properties for any I C [n].

— Additive decomposition: p; ;(X) = pg ]) (X) + pg ])( ) for (i,7) € W.

— Degree preserving;: deg(pg J) (X)) and deg(pg J)(X )) are at most deg(p; ;(X))
for (i,5) e W.

— Non-overlapping: Let w = WitExt((p;,;j (X)) . jyew), wH) = WitEXt((PE,lj) (X)) (i,5)c

and w® = WitExt((p{>) (X)) (i jyew)- Then

(Wi)ier = (ng))iel (Wi)igr = (wﬁz))m (ngl))z’gél =0 (WZ@))iEI =0
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The “Linking” component in Lunar

e Challenge: the opening of input commitments are
“shifted” in some way inside w (encode through the
transcript commitments)

e Solution: Prove each c_1...c_ell can be expressed
through appropriate decomposition

* The result is a pairing-based “linking” proof of roughly
O(ell) size.




The “Linking” component in ECLIPSE

* Several similarities with the approach in Lunar
* Differences:

* Proves through an (amortized) Sigma-protocol a “squashing” of
the input commitments

* This requires O(ell d) communication, but it’'s then compressed
through Compressed-Sigma tricks [AC20] to O(log(ell d))

* The resulting “squashed” C above is then used to show
consistency in a similar fashion as in Lunar
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Additional Results In Lunar

A framework for polynomially holographic proofs (PHPs)

* Includes previous AHP/ILDPs/PIOPs as special cases Lot

b+ R-c¢c=0
aob=c
R1CSLite

A new constraint system R1CSLite (“simpler” version of R1CS) {
e Allows to obtain more efficient SNARKs
e Concrete constructions of SNARKSs

* Improving on the state of the art in several metrics



Scary tables from Lunar (efficiency of constructions)

JASNARK size | time |
srs| |ekr| |vkgr| || KeyGen Derive Prove Verify
. Gy 4N 36n — 20 4N 36m 273n o
Sonic 7 pairings
[@ Gy, AN — 3 — 4N — —
' F - — — 16 — O(mlogm) O(mlogm) O(£+logm)
Gy 3M 3m 12 13 3M 12m 14n+8m .
MARLIN 2 pairings
@ G 2 o 2 = - B oracles V checks
| F — — — 8 — O(mlogm) O(mlogm) O(f+logm) PHP degree RE P msgs proof length Yo d G d e
PLONK Gy 3N*3n+3a 8 7 3N~ 8n+8a lin+1la 5 vairi €6 egf\'f{-\'-}( "1 eg-\'~{-’f:}( 1)
(small proof) G, 1 — 1 — 1 - - pairngs PHP..; .3 2m 8 7 1 |n|+2m 2 2 2
|]278: F — — — 7 — O((n+a)log(n+a)) O((n+a)log(n+a)) O(f+log(n+a))  PHPiite1x Rk 21 5 7 1 |m +2m 2 2 3
* * PHPjie2 H.3| m 24 7 1 |m 2 2 2
PLONK Gy N* n4+a 8 9 N 8n+8a In+9a 2 pairings lite2 m ' i
(fast prover) Go 1 - 1 — 1 — — PHP it e0x Rkﬁ m 16 7 1 |m 2 2 3
28] F — —  — 7 — O((n+ta)log(n+a)) O((n+a)log(n+a)) O(L+log(n+a))  PHP, . W4 3m 9 8 1 |n'|+4m 2 2 2
Gt M m — 10 M — 8n+3m . PHP <14 Rka 3m 6 8 1 |n'l+4m 2 2 3
_ 7 pairings
LunarLite Gy M — 27 — M 24m — PHP 12 U4 m™m 57 8 1 | 2 2 2
(this work) F — — — 2 — O(mlogm) O(mlogm) O(£+logm) PHP,; o, Rk‘ﬂ m 12 8 1 |In 9 2 3
GG M m — 11 M — In+3m 7 et PHP, .z M4 3m 12 8 1 |n 2 2 5
Lunarles Gy M — 60 — M 5Tm —
(fast & short) F — — — 2 — O(mlogm) O(mlogm) O(£+logm) All PHP Constructions in Lunar
Gy 3M 3m 12 12 3M 12m In+8m 9 1 airings
Lunarlecs G, 1 — 1 — 1 = — P 2
(shortvk) F — — — 5  — O(mlogm) O(mlogm) O(£+logm)

Some of the resulting SNARK construction and comparison



Open Questions

] |77 Prove (time) Verify (time)
* Better asymptotics: ECLIPSE [ABC+21] O (log(¢ - d)) OMn+4-d) O(-d) '
Lunar [CFF™20] O (¢) O(n+£-d) O (¢)
 O(\ell) is inherent in verification Future? o(1) O(¢)
time, but can we achieve constant
proof size?

 Maybe with one-level of
(specialised) recursion?

* Different techniques for linking
and/or finding other applications
for them.



https://ia.cr/2020/1069 On eprint soon!

Thanks!



