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Abstract. We present new protocols for the verification of space
bounded polytime computations against a rational adversary. For such
computations requiring sublinear space our protocol requires only a ver-
ifier running in sublinear-time. We extend our main result in several
directions: (i) we present protocols for randomized complexity classes,
using a new composition theorem for rational proofs which is of indepen-
dent interest; (ii) we present lower bounds (i.e. conditional impossibility
results) for Rational Proofs for various complexity classes.

Our new protocol is the first rational proof not based on the circuit
model of computation, and the first sequentially composable protocols for
a well-defined language class.

1 Introduction

Consider the problem of Outsourced Computation where a computationally
“weak” client hires a more “powerful” server to store data and perform com-
putations on its behalf. This paper is concerned with the problem of designing
outsourced computation schemes that incentivize the server to perform correctly
the tasks assigned by the client.

The rise of the cloud computing paradigm where business do not maintain
their own IT infrastructure, but rather hire “providers” to run it, has brought
this problem to the forefront of the research community. The goal is to find
solutions that are efficient and feasible in practice for problems such as: How
do we check the integrity of data that is stored remotely? How do we check
computations performed on this remotely stored data? How can a client do this
in the most efficient way possible?

For all the scenarios above, what mechanisms can be designed to incentivize
parties to perform correctly no matter what the cost of the correct behavior
might be?

1.1 Complexity Theory and Cryptography

The problem of efficiently checking the correctness of a computation performed
by an untrusted party has been central in Complexity Theory for the last 30
years since the introduction of Interactive Proofs by Babai and Goldwasser,
Micali and Rackoff [5,14].
c© Springer International Publishing AG 2017
S. Rass et al. (Eds.): GameSec 2017, LNCS 10575, pp. 53–73, 2017.
DOI: 10.1007/978-3-319-68711-7_4



54 M. Campanelli and R. Gennaro

Verifiable Outsourced Computation is now a very active research area in Cryp-
tography and Network Security (see [27] for a survey) with the aim to design
protocols where it is impossible (under suitable cryptographic assumptions) for
a provider to “cheat” in the above scenarios. While much progress has been done
in this area, we are still far from solutions that can be deployed in practice. Part
of the reason is that Cryptographers consider a very strong adversarial model
that prevents any adversary from cheating. A different approach is to restrict
ourselves to rational adversaries, whose motivation is not just to disrupt the
protocol or computation, but simply to maximize a well defined utility function
(e.g. profit).

1.2 Rational Proofs

In our work we use the concept of Rational Proofs introduced by Azar and Micali
in [3] and refined in a subsequent paper [4].

In a Rational Proof, given a function f and an input x, the server returns
the value y = f(x), and (possibly) some auxiliary information, to the client. The
client will in turn pay the server for its work with a reward which is a function of
the messages sent by the server and some randomness chosen by the client. The
crucial property is that this reward is maximized in expectation when the server
returns the correct value y. Clearly a rational prover who is only interested in
maximizing his reward, will always answer correctly.

The most striking feature of Rational Proofs is their simplicity. For example
in [3], Azar and Micali show single-message Rational Proofs for any problem in
#P , where an (exponential-time) prover convinces a (poly-time) verifier of the
number of satisfying assignment of a Boolean formula.

For the case of “real-life” computations, Azar and Micali in [4] consider the
case of efficient provers (i.e. poly-time) and “super-efficient” (log-time) veri-
fiers and present d-round Rational Proofs for functions computed by (uniform)
Boolean circuits of depth d, for d = O(log n).

Recent work [16] shows how to obtain Rational Proofs with sublinear verifiers
for languages in NC. Recalling that L ⊆ NL ⊆ NC2, one can use the protocol in
[16] to verify a logspace polytime computation (deterministic or nondeterminis-
tic) in O(log2 n) rounds and O(log2 n) verification.

The work by Chen et al. [9] focuses on rational proofs with multiple provers
and the related class MRIP of languages decidable by a polynomial verifier inter-
acting with an arbitrary number of provers. Under standard complexity assump-
tions, MRIP includes languages not decidable by a verifier interacting only with
one prover. The class MRIP is equivalent to EXP||NP.

1.3 Repeated Executions with a Budget

In [8] we present a critique of the rational proof model in the case of “repeated
executions with a budget”. This model arises in the context of “volunteer com-
putations” [1,22] where many computational tasks are outsourced and provers
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compete in solving as many as possible to obtain rewards. In this scenario assume
that a prover has a certain budget B of “computational effort”: how can one
guarantee that the rational strategy is to provide the correct answer in all the
proof he provides? The notion of rational proof guarantees that if the prover
engages in a single rational proof then it is in his best interest to provide the
correct output. But in [8] we show that in the presence of many computations,
it might be more profitable for the prover to use his budget B to provide many
incorrect answers than to provide a single correct answer. That’s because incor-
rect (e.g. random) answers are “cheaper” to compute than the correct one and
with the same budget B the prover can provide many of them while the entire
budget might be necessary to solve a single problem correctly. If the difference
in reward between correct and incorrect answers is not high enough then many
incorrect answers may be more profitable and a rational prover will choose that
strategy, and indeed this is the case for many of the protocols in [3,4,15,16].

In [8] we put forward a stronger notion of sequentially composable rational
proofs which avoids the above problem and guarantees that the rational strategy
is always the one to provide correct answers. We also presented sequentially
composable rational proofs, but only for some ad-hoc cases, and were not able
to generalize them to well-defined complexity classes.

1.4 Our Contribution

This paper presents new protocols for the verification of space-bounded polytime
computations against a rational adversary. More specifically, let L be a language
in the class DTISP(T (n), S(n)), i.e. L is recognized by a deterministic Turing
Machine ML which runs in time T (n) and space S(n). We construct a protocol
where a rational prover can convince the verifier that x ∈ L or x /∈ L with the
following properties:

– The verifier runs in time O(S(n) log n)
– The protocol has O(log n) rounds and communication complexity

O(S(n) log n)
– The prover simply runs ML(x)

Under suitable assumptions, our protocol can be proven to correctly incentivize
a prover in both the stand-alone model of [3] and the sequentially composable
definition of [8]. This is the first protocol which is sequentially composable for a
well-defined complexity class.

For the case of “real-life” computations (i.e. poly-time computations veri-
fied by a “super-efficient” verifier) we note that for computations in sublinear
space our general results yields a protocol in which the verifier is sublinear-
time. More specifically, we introduce the first rational proof for SC (also known
as DTISP(poly(n), polylog(n))) with polylogarithmic verification and logarithmic
rounds.

To compare this with the results in [16], we note that it is believed that
NC �= SC and that the two classes are actually incomparable (see [10] for a
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discussion). For these computations our results compare favorably to the one in
[16] in at least one aspect: our protocol requires O(log n) rounds and has the
same verification complexity1.

We present several extensions of our main result:

– Our main protocol can be extended to the case of space-bounded randomized
computations using Nisan’s pseudo-random generator [24] to derandomize the
computation.

– We also present a different protocol that works for BPNC (bounded error
randomized NC) where the Verifier runs in polylog time (note that this class
is not covered by our main result since we do not know how to express NC
with a polylog-space computation). This protocol uses in a crucial way a new
composition theorem for rational proofs which we present in this paper and
can be of independent interest.

– Finally we present lower bounds (i.e. conditional impossibility results) for
Rational Proofs for various complexity classes.

1.5 The Landscape of Rational Proof Systems

Rational Proof systems can be divided in roughly two categories, both of them
presented in the original work [3].

Scoring Rules. The work in [3] uses scoring rules to compute the reward paid
by the verifier to the prover. A scoring rule is used to asses the “quality” of
a prediction of a randomized process. Assume that the prover declares that a
certain random variable X follows a particular probability distribution D. The
verifier runs an “experiment” (i.e. samples the random variable in question) and
computes a “reward” based on the distribution D announced by the prover and
the result of the experiment. A scoring rule is maximized if the prover announced
the real distribution followed by X. The novel aspect of many of the protocols in
[3] was how to cast the computation of y = f(x) as the announcement of a certain
distribution D that could be tested efficiently by the verifier and rewarded by a
scoring rule.

A simple example is the protocol for #P in [3] (or its “scaled-down” ver-
sion for Hamming weight described more in detail in Sect. 2.1). Given a Boolean
formula Φ(x1, . . . , xn) the prover announces the number m of satisfying assign-
ments. This can be interpreted as the prover announcing that if one chooses an
assignment at random it will be a satisfying one with probability m · 2−n. The
verifier then chooses a random assignment and checks if it satisfies Φ or not and
uses m and the result of the test to compute the reward via a scoring rule. Since
the scoring rule is maximized by the announcement of the correct m, a rational
prover will announce the correct value.

1 We also point out that in [16] a rational protocol for P , polytime computations,
is presented, but for the case of a computationally bounded prover, i.e. a rational
argument.
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As pointed out in [8] the problem with the scoring rule approach is that
the reward declines slowly as the distribution announced by the Prover becomes
more and more distant from the real one. The consequence is that incorrect
results still get a substantial reward, even if not a maximal one. Since those
incorrect results can be computed faster than the correct one, a Prover with
“budget” B might be incentivized to produce many incorrect answers instead of
a single correct one. All of the scoring rule based protocols in [3,4,15,16] suffer
from this problem.

Weak Interactive Proofs. In the definition of rational proofs we require
that the expected reward is maximized for the honest prover. This definition
can be made stronger (as done explicitly in [15]) requiring that every systemat-
ically dishonest prover would incur a polynomial loss (this property is usually
described in terms of a noticeable reward gap). Obviously we can use classical
interactive proofs to trivially obtain this property. In fact, recall standard inter-
active proofs: at the end of the interaction with a prover, the verifier applies a
“decision function” D to a transcript in order to accept or reject the input x.
A verifier may then pay the prover a reward R = poly(|x|) iff D accepts. The
honest prover will clearly maximize its reward since, by definition of interactive
proof, the probability of a wrong acceptance/rejection is negligible. Notice hov-
erer that we can obtain rational proofs with noticeble reward gap even if the
protocol has a much higher error probability. In fact, for an appropriate choice
of a (polynomial) reward R, the error probability can be as high as 1 − n−k for
some k ∈ N. We call an interactive proof with such a high error probability a
weak interactive proof 2.

Weak interactive proofs can be turned into strong (i.e. with negligible error)
classical ones by repetition, which however increases the computational cost of
the verifier. But since to obtain a rational proof it is not necessary to repeat
them, we can use them to obtain rational proofs which are very efficient for the
verifier. Indeed, some of the protocols in [3,8] are rational proofs based on weak
interactive proofs. This approach is also the main focus in the present work.

Discussion. There are two intriguing questions when we compare the “scoring
rules” approach to build rational proofs, to the one based on “weak interactive
proofs”.

– Is one approach more powerful than the other?
– All the known sequentially composable proofs are weak interactive proofs.

Does sequential composition requires a weak interactive proof?

We do not know the answers to the above questions. For a more detailed discus-
sion we refer the reader to the end of Sect. 7.

2 This is basically the covert adversary model for multiparty computation introduced
in [2].
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1.6 Other Related Work

Interactive Proofs. As already discussed, a “traditional” interactive proof
(where security holds against any adversary, even a computationally unbounded
one) would work in our model. In this case the most relevant result is the recent
independent work in [26] that presents breakthrough protocols for the deter-
ministic (and randomized) restriction of the class of language we consider. If
L is a language which is recognized by a deterministic (or randomized) Turing
Machine ML which runs in time T (n) and space S(n), then their protocol has
the following properties:

– The verifier runs in O(poly(S(n)) + n · polylog(n)) time;
– The prover runs in polynomial time;
– The protocol runs in constant rounds, with communication complexity

O(poly(S(n)nδ) for a constant δ.

Apart from round complexity (which is the impressive breakthrough of the result
in [26]) our protocols fares better in all other categories. Note in particular that
a sublinear space computation does not necessarily yield a sublinear-time verifier
in [26]. On the other hand, we stress that our protocol only considers weaker
rational adversaries.

Computational Arguments. There is a large class of protocols for arguments
of correctness (e.g. [12,13,19]) even in the rational model [15,16]. Recall that in
an argument, security is achieved only against computationally bounded prover.
In this case even single round solutions can be achieved. We do not consider
this model in this paper, except in Sect. 5.2 as one possible option to obtain
sequential composability.

Computational Decision Theory. Other works in theoretical computer sci-
ence have studied the connections between cost of computation and utility in
decision problems. The work in [17] proposes a framework for computational
decision problems, where the Decision Maker’s (DM) utility depends on the algo-
rithm chosen for computing its strategy. The Decision Maker runs the algorithm,
assumed to be a Turing Machine, on the input to the computational decision
problem. The output of the algorithm determines the DM’s strategy. Thus the
choice of the DM reduces to the choice of a Turing Machine from a certain space.
The DM will have beliefs on the running time (cost) of each Turing Machine.
The actual cost of running the chosen TM will affect the DM’s reward. Rational
proofs with costly computation could be formalized in the language of computa-
tional decision problems in [17]. There are similarities between the approach in
this work and that in [17], as both take into account the cost of computation in
a decision problem.

2 Rational Proofs

The following is the definition of Rational Proof from [3]. As usual with neg(·)
we denote a negligible function, i.e. one that is asymptotically smaller than the
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inverse of any polynomial. Conversely a noticeable function is the inverse of a
polynomial.

Definition 1 (Rational Proof). A function f : {0, 1}n → {0, 1}∗ admits a
rational proof if there exists an interactive proof (P, V ) and a randomized reward
function rew : {0, 1}∗ → R≥0 such that

1. For any input x ∈ {0, 1}n, Pr[out((P, V )(x)) = f(x)] ≥ 1 − neg(n).
2. For every prover ˜P , and for any input x ∈ {0, 1}n there exists a δ

˜P (x) ≥ 0
such that E[rew(( ˜P , V )(x))] + δ

˜P (x) ≤ E[rew((P, V )(x))].

The expectations and the probabilities are taken over the random coins of the
prover and verifier.

We note that differently than [3] we allow for non-perfect completeness: a negli-
gible probability that even the correct prover will prove the wrong result. This
will be necessary for our protocols for randomized computations.

Let ε
˜P = Pr[out((P, V )(x)) �= f(x)]. Following [15] we define the reward gap as

Δ(x) = minP ∗:εP ∗=1[δP ∗(x)], i.e. the minimum reward gap over the provers that
always report the incorrect value. It is easy to see that for arbitrary prover ˜P
we have δ

˜P (x) ≥ ε
˜P · Δ(x). Therefore it suffices to prove that a protocol has a

strictly positive reward gap Δ(x) for all x.

Definition 2 [3,4,15]. The class DRMA[r, c, T ] (Decisional Rational Merlin
Arthur) is the class of boolean functions f : {0, 1}∗ → {0, 1} admitting a rational
proof Π = (P, V, rew) s.t. on input x:

– Π terminates in r(|x|) rounds;
– The communication complexity of P is c(|x|);
– The running time of V is T (|x|);
– The function rew is bounded by a polynomial;
– Π has noticeable reward gap.

Remark 1. The requirement that the reward gap must be noticeable was intro-
duced in [4,15] and is explained in Sect. 5.

2.1 A Warmup Example

Consider the function f : {0, 1}n → [0 . . . n] which on input x outputs the Ham-
ming weight of x (i.e.

∑

i xi where xi are the bits of x).
In [4] the prover announces a number m̃ which he claims to be equal to m =

f(x). This can be interpreted as the prover announcing that if one chooses an input
bit xi at random it will be equal to 1 with probability p̃ = m̃/n. The verifier then
chooses a random input bit xi and uses m̃, xi to compute the reward via a scoring
rule. Since the scoring rule is maximized by the announcement of the correct m, a
rational prover will announce the correct value. The scoring rule used in [4] (and
in all other rational proofs based on scoring rules) is Brier’s rule where the reward
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is computed as BSR(p̃, xi) where BSR(p̃, 1) = 2p̃(2 − p̃) and BSR(p̃, 0) =
2(1 − p̃2). Notice that p = m/n is the actual probability to get 1 when select-
ing an input bit at random, so the expected reward of the prover is pBSR(p̃, 1)+
(1 − p)BSR(p̃, 0) which is easily seen to be maximized for p̃ = p, i.e. m̃ = m.

In [8] we propose an alternative protocol for f (motivated by the issues
we discuss in Sect. 5). In our protocol we compute f via an “addition circuit”,
organized as a complete binary tree with n leaves which are the input, and
where each internal node is a (fan-in 2) addition gate – note that this circuit
has depth d = log n. The protocol has d rounds: at the first round the prover
announces m̃ (the claimed value of f(x)) and its two “children” yL, yR in the
output gate, i.e. the two input values of the last output gate G. The Verifier
checks that yL + yR = m̃, and then asks the Prover to verify that yL or yR

(chosen a random) is correct, by recursing on the above test. At the end the
verifier has to check the last addition gate on two input bits: she performs this
test on her own by reading just those two bits. If any of the tests fails, the verifier
pays a reward of 0, otherwise she will pay R. The intuition is that a cheating
prover will be caught with probability 2−d which is exactly the reward gap (and
for log-depth circuits like this one is noticeable). Note that the first protocol is
a scoring-rule based one, while the second one is a weak-interactive proof.

3 Rational Proofs for Space-Bounded Computations

We are now ready to present our protocol. It uses the notion of a Turing Machine
configuration, i.e. the complete description of the current state of the computa-
tion: for a machine M , its state, the position of its heads, the non-blank values
on its tapes.

Let L ∈ DTISP(T (n), S(n)) and M be the deterministic TM that recognizes
L. On input x, let γ1, . . . , γN (where N = T (|x|)) be the configurations that
M goes through during the computation on input x, where γi+1 is reached
from γi according to the transition function of M . Note, first of all, that each
configuration has size O(S(n)). Also if x ∈ L (resp. x /∈ L) then γN is an
accepting (resp. rejecting) configuration.

The protocol presented below is a more general version of the one used in [8]
and described above. The prover shows the claimed final configuration γ̂N and
then prover and verifier engage in a “chasing game”, where the prover “commits”
at each step to an intermediate configuration. If the prover is cheating (i.e. γ̂N is
wrong) then the intermediate configuration either does not follow from the initial
configuration or does not lead to the final claimed configuration. At each step
and after P communicates the intermediate configuration γ′, the verifier then
randomly chooses whether to continue invoking the protocol on the left or the
right of γ′. The protocol terminates when V ends up on two previously declared
adjacent configurations that he can check. Intuitively, the protocol works since,
if γ̂N is wrong, for any possible sequence of the prover’s messages, there is at
least one choice of random coins that allows V to detect it; the space of such
choices is polynomial in size.
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We assume that V has oracle access to the input x. What follows is a formal
description of the protocol.

1. P sends to V :
– γN , the final accepting configuration (the starting configuration, γ1,

is known to the verifier);
– N , the number of steps between the two configurations.

2. Then V invokes the procedure PathCheck(N, γ1, γN ).

The procedure PathCheck(m, γl, γr) is defined for 1 ≤ m ≤ N as follows:

– If m > 1, then:
1. P sends intermediate configurations γp and γq (which may coincide)

where p = � l+m−1
2 	 and q = 
 l+m−1

2 �.
2. If p �= q, V checks whether there is a transition leading from config-

uration γp to configuration γq. If yes, V accepts; otherwise V halts
and rejects.

3. V generates a random bit b ∈R {0, 1}
4. If b = 0 then the protocol continues invoking PathCheck(�m

2 	, γl, γp);
If b = 1 the protocol continues invoking PathCheck(�m

2 	, γq, γr)
– If m = 1, then V checks whether there is a transition leading from con-

figuration γl to configuration γr. If l = 1, V checks that γl is indeed the
initial configuration γ1. If r = N , V checks that γr is indeed the final
configuration sent by P at the beginning. If yes, V accepts; otherwise V
rejects.

Theorem 1. DTISP[poly(n), S(n)] ⊆ DRMA[O(log n), O(S(n) logn), O(S(n) log n)]

Proof. Let us consider the efficiency of the protocol above. It requires O(log n)
rounds. Since the computation is in DTISP[poly(n), S(n)], the configurations P
sends to V at each round have size O(S(n)). The verifier only needs to read the
configurations and, at the last round, check the existence of a transition leading
from γl to γr. Therefore the total running time for V is O(S(n) log n).

Let us now prove that this is a rational proof with noticeable reward gap.
Observe that the protocol has perfect completeness. Let us now prove that the
soundness is at most 1 − 2− log N = 1 − 1

O(poly(n)) . We aim at proving that,
if there is no path between the configurations γ1 and γN then V rejects with
probability at least 2− log N . Assume, for sake of simplicity, that N = 2k for
some k. We will proceed by induction on k. If k = 1, P provides the only
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intermediate configuration γ′ between γ1 and γN . At this point V flips a coin
and the protocol will terminate after testing whether there exists a transition
between γ1 and γ′ or between γ′ and γN . Since we assume the input is not in
the language, there exists at most one of such transitions and V will detect this
with probability 1/2.

Now assume k > 1. At the first step of the protocol P provides an inter-
mediate configuration γ′. Either there is no path between γ1 and γ′ or there is
no path between γ′ and γN . Say it is the former: the protocol will proceed on
the left with probability 1/2 and then V will detect P cheating with probability
2−k+1 by induction hypothesis, which concludes the proof.

The theorem above implies the results below.

Corollary 1. L ⊆ DRMA[O(log n), O(log2 n), O(log2 n)]

This improves over the construction of rational proofs for L in [16] due to the
better round complexity.

Corollary 2. SC ⊆ DRMA[O(log n), O(polylog(n)), O(polylog(n))]

No known result was known for SC before.

3.1 Rational Proofs for Randomized Bounded Space Computation

We now describe a variation of the above protocol, for the case of random-
ized bounded space computations. Let BPTISP[t, s] denote the class of lan-
guages recognized by randomized machines using time t and space s with error
bounded by 1/3 on both sides. In other words, L ∈ BPTISP[poly(n), S(n)] if
there exists a (deterministic) Turing Machine M such that for any x ∈ {0, 1}∗

Prr∈R{0,1}ρ(|x|) [M(x, r) = L(x)] ≥ 2
3 and that runs in S(|x|) space and polyno-

mial time. Let ρ(n) be the maximum number of random bits used by M for
input x ∈ {0, 1}n; ρ(·) is clearly polynomial.

We can bring down the 2/3 probability error to neg(n) by construct-
ing a machine M ′. M ′ would simulate the M on x iterating the simulation
m = poly(|x|) times using fresh random bits at each execution and taking the
majority output of M(x; ·). The machine M ′ uses mρ(|x|) random bits and runs
in polynomial time and S(|x|) + O(log(n)) space.

The work in [24] introduces pseudo-random generators (PRG) resistant
against space bounded adversaries. An implication of this result is that any ran-
domized Turing Machine M1 running in time T and space S can be simulated
by a randomized Turing Machine M2 running in time O(T ), space O(S log(T ))
and using only O(S log(T )) random bits3 (see in particular Theorem 3 in [24]).
Let L ∈ BPTISP[(poly(n), S(n)] and M ′ defined as above. We denote by M̂ the
simulation of M ′ that uses Nisan’s result described above.

3 We point out that the new machine M2 introduces a small error. For our specific
case this error keeps the overall error probability negligible and we can ignore it.
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By using the properties of the new machine M̂ , we can directly construct
rational proofs for BPTISP(poly(n), S(n)). We let the verifier picks a random
string r (of length O(S log(T ))) and sends it to the prover. They then invoke a
rational proof for the computation M̂(x; r).

By the observations above and Theorem1 we have the following result:

Corollary 3. BPTISP[poly(n), S(n)] ⊆ DRMA[log(n), S(n) log2(n), S(n) log2(n)]

We note that for this protocol, we need to allow for non-perfect completeness
in the definition of DRMA in order to allow for the probability that the verifier
chooses a bad random string r.

4 A Composition Theorem for Rational Proofs

In this Section we prove an intuitively simple, but technically non-trivial, com-
position theorem that states that we while proving the value of a function f , we
can replace oracle access to a function g, with a rational proof for g. The tech-
nically interesting part of the proof is to make sure that the total reward of the
prover is maximized when the result of the computation of f is correct. In other
words, while we know that lying in the computation of g will not be a rational
strategy for just that computation, it may turn out to be the best strategy as
it might increase the reward of an incorrect computation of f . A similar issue
(arising in a particular rational proof for depth d circuits) was discussed in [4]:
our proof generalizes their technique.

Definition 3. We say that a rational proof (P, V, rew) for f is a g-oracle ratio-
nal proof if V has oracle access to the function g and carries out at most one
oracle query. We allow the function g to depend on the specific input x.

Theorem 2. Assume there exists a g-oracle rational proof (P o
f , V o

f , rewo
f ) for f

with noticeable reward gap and with round, communication and verification com-
plexity respectively rf , cf and Tf . Let tI the time necessary to invoke the oracle
for g and to read its output.Assume there exists a rational proof (Pg, Vg, rewg)
with noticeable reward gap for g with round, communication and verification
complexity respectively rg, cg and Tg. Then there exists a (non g-oracle) rational
proof with noticeable reward gap for f with round, communication and verifica-
tion complexity respectively rf + 1 + rg, cf + tI + cg and Tf − ti + Tg.

Before we embark on the proof of Theorem 2 we state a technical Lemma
whose simple proof is omitted for lack of space. The definition of rational proof
requires that the expected reward of the honest prover is not lower than the
expected reward of any other prover. The following intuitive lemma states we
necessarily obtain this property if an honest prover has a polynomial expected
gain in comparison to provers that always provide a wrong output.

Lemma 1. Let (P, V ) be a protocol and rew a reward function as in Definition 1.
Let f be a function s.t. ∀x Pr[out(P, V )(x)] = 1. Let Δ be the corresponding
reward gap w.r.t. the honest prover P and f . If Δ > 1

poly(n) then (P, V, rew) is a
rational proof for f and admits noticeable reward gap.
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Now we can start the proof of Theorem 2.

Proof. Let rewo
f and rewg be the reward functions of the g-oracle rational proof

for f and the rational proof for g respectively. We now construct a new verifier V
for f . This verifier runs exactly like the g-oracle verifier for f except that every
oracle query to g is now replaced with an invocation of the rational proof for g.
The new reward function rew is defined as: rew(T ) = δrewo

f (T o
f ◦yg)+ rewg(Tg).

Here T is the complete transcript of the new rational proof, T o
f is the transcript

of the oracle rational proof for f , Tg and yg are respectively the transcript and
the output of the rational proof for g. Finally δ is multiplicative factor in (0, 1]).
The intuition behind this formula is to “discount” the part of the reward from f
so that the prover is incentivized to provide the true answer for g. In turn, since
rewo

f rewards the honest prover more when the verifier has the right answer for a
query to g (by hypothesis), this entails that the whole protocol is rational proof
for f .

To prove the theorem we will use Lemma 1 and it will suffice to prove that
the new protocol has a noticeable reward gap.

Consider a prover ˜P that always answer incorrectly on the output of f . Let
pg be the probability that the prover outputs a correct yg. Then the difference
between the expected reward of the honest prover and ˜P is:

δ(Ro
f − R̃o

f ) + (Rg − R̃g) = (1)

δ(Ro
f − pgR̃

o,good(g)
f − (1 − pg)R̃

o,wrong(g)
f )

+ (Rg − pgR̃
good(g)
g − (1 − pg)R̃wrong(g)

g ) = (2)

δ(pg(Ro
f − R̃

o,good(g)
f ) + (1 − pg)(Rf − R̃

o,wrong(g)
f ))

+ pg(Rg − R̃good(g)
g ) + (1 − pg)(Rg − R̃wrong(g)

g ) > (3)

pgδΔ
o
f + (1 − pg)(Δg − δbo

f (n)) ≥ (4)

min{δΔo
f ,Δg − δbo

f (n)} > (5)
1

poly(n)
(6)

where the last inequality holds for δ = Δg

2bo
f (n)

.
The round, communication and verification complexity of the construc-

tion is given by the sum of the respective complexities from the two rational
proofs modulo minor adjustments. These adjustments account for the additional
round by which the verifier communicates to the prover the requested instance
for g. ��

We can use this result as a design tool of rational proofs for a function f : First
build a rational proof for a function g and then one for f where we assume the
verifier has oracle access to g. This automatically provides a complete rational
proof for f .
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Remark 2. Theorem 2 assumes that verifier in the oracle rational proof for f
carries out a single oracle query. Notice however that the proof of the theorem
can be generalized to any verifier carrying out a constant number of adaptive
oracle queries, possibly all for distinct functions. This can be done by iteratively
applying the theorem to a sequence of m = O(1) oracle rational proofs for
functions f1, ..., fm where the i-th rational proof is fi+1-oracle for 1 ≤ i < m.

4.1 Rational Proofs for Randomized Circuits

As an application of the composition theorem described above we present an
alternative approach to rational proofs for randomized computations. We show
that by assuming the existence of a common reference string (CRS)4 we obtain
rational proofs for randomized circuits of polylogarithmic depth and polynomial
size, i.e. BPNC the class of uniform polylog-depth poly-size randomized circuits
with error bounded by 1/3 on both sides.

If we insist on a “super-efficient” verifier (i.e. with sublinear running time) we
cannot use the same approach as in Sect. 3.1 since we do not know how to bound
the space S(n) used by a computation in NC (and the verifier’s complexity in
our protocol for bounded space computations, depends on the space complexity
of the underlying language). We get around this problem by assuming a CRS,
to which the verifier has oracle access.

We start by describing a rational proof with oracle access for BPP and then
we show how to remove the oracle access (via our composition theorem) for the
case of BPNC.

Let L ∈ BPP and let M a PTM that decides L in polynomial time and
ρ(·) the randomness complexity of M . For x ∈ {0, 1}∗ we denote by Lx the
(deterministically decidable) language {(x, r) : r ∈ {0, 1}ρ(|x|)∧M(x, r) = L(x)}.

Lemma 2. Let L be a language in BPP. Then there exists a Lx-oracle rational
proof with CRS σ for L where |σ| = poly(n)ρ(n).

Proof. Our construction is as follows. W.l.o.g. we will assume σ to be divided in

 = poly(n) blocks r1, ..., r�, each of size ρ(n).

1. The honest prover P runs M(x, ri) for 1 ≤ i ≤ 
 and announces m the number
of strings ri s.t. M(x, ri) accepts, i.e.

∑

i M(x, ri);
2. P sends m to x.
3. The Verifier accepts if m > 
/2

We note that if we set yi = M(x, ri) then the prover is announcing the Hamming
weight of the string y1, . . . , y�. At this point we can use the Hamming weight
verification protocol in Sect. 2.1 where the Verifier use the oracle for Lx to verify
on her own the value of yi.

4 A common reference string is a string generated by a trusted party to which both
the prover and the verifier have access; it is a common assumption in cryptographic
literature, e.g. Non-Interactive Zero Knowledge [7].
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We note that no matter which protocol is used, round complexity, communica-
tion complexity and verifier running time (not counting the oracle calls) are all
polylog(n).

To obtain our result for BPNC we invoke the following result from [16]:

Theorem 3. NC ⊆ DRMA[polylog(n), polylog(n), polylog(n)]

The theorem above, together with Theorem 2 and Lemma 2 yields:

Corollary 4. Let x ∈ {0, 1}n and L ∈ BPNC. Assuming the existence of a
(polynomially long) CRS then there exists a rational proof for L with polyloga-
rithmically many rounds, polylogarithmic communication and verification com-
plexity.

Notice that some problems (e.g. perfect matching) are not known to be in NC
but are known to be in RNC ⊆ BPNC [20].

5 Sequential Composability

Until now we have only considered agents who want to maximize their reward.
But the reward alone, might not capture the complete utility function that the
Prover is trying to maximize in his interaction with the Verifier. In particular we
have not considered the cost incurred by the Prover to compute f and engage
in the protocol. It makes sense then to define the profit of the Prover as the
difference between the reward paid by the verifier and such cost.

As already pointed out in [4,15] the definition of Rational Proof is sufficiently
robust to also maximize the profit of the honest prover and not just the reward.
Indeed consider the case of a “lazy” prover P̃ that does not evaluate the function:
let R̃(x), C̃(x) be the reward and cost associated with P̃ on input x (while
R(x), C(x) are the values associated with the honest prover).

Obviously we want R(x)−C(x) ≥ R̃(x)−C̃(x) or equivalently R(x)−R̃(x) ≥
C(x) − C̃(x). Recall the notion of reward gap: the minimum difference between
the reward of the honest prover and any other prover Δ(x) ≤ R(x) − R̃(x). To
maximize the profit it is then sufficient to change the reward by a a multiplier
M = C(x)/Δ(x). Thus we have that M(R(x)− R̃(x)) ≥ C(x) ≥ C(x) − C̃(x) as
desired. This explains why we require the reward gap to be at least the inverse
of a polynomial: this will maintain the total reward paid by the Verifier bounded
by a polynomial.

5.1 Profit in Repeated Executions

In [8] we showed how if Prover and Verifier engage in repeated execution of
a Rational Proof, where the Prover has a “budget” of computation cost that
he is willing to invest, then there is no guarantee anymore that the profit is
maximized by the honest prover. The reason is that it might be more profitable
for the prover to use his budget to provide many incorrect answers than to
provide a single correct answer. That’s because incorrect (e.g. random) answers
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are “cheaper” to compute than the correct one and with the same budget B the
prover can provide many of them while the entire budget might be necessary to
solve a single problem correctly. If incorrect answers still receive a substantial
reward then many incorrect answers may be more profitable and a rational prover
will choose that strategy.

We refer the reader to [8] for concrete examples of situations where this
happens in many of the protocols in [3,4,15,16].

This motivated us to consider a stronger definition which requires the reward
to be somehow connected to the “effort” paid by the prover. The definition
(stated below) basically says that if a (possibly dishonest) prover invests less
computation than the honest prover then he must collect a smaller reward.

Definition 4 (Sequential Rational Proof). A rational proof (P, V ) for a
function f : {0, 1}n → {0, 1}n is (ε,K)-sequentially composable for an input
distribution D, if for every prover ˜P , and every sequence of inputs x, x1, . . . , xk

drawn according to D such that C(x) ≥ ∑k
i=1 C̃(xi) and k ≤ K we have that

∑

i R̃(xi) − R ≤ ε.

The following Lemma is from [8].

Lemma 3. Let (P, V ) and rew be respectively an interactive proof and a reward
function as in Definition 1; if rew can only assume the values 0 and R for some
constant R, let p̃x = Pr[rew(( ˜P , V )(x)) = R]. If for x ∈ D, p̃x ≤ C̃(x)

C + ε then
(P, V ) is (KRε,K)-sequentially composable for D.

The intuition behind our definition and Lemma3 is that to produce the
correct result, the prover must run the computation and incur its full cost;
moreover for a dishonest prover his probability of “success” has to be no bigger
than the fraction of the total cost incurred.

This intuition is impossible to formalize if we do not introduce a probability
distribution over the input space. Indeed, for a specific input x a “dishonest”
prover ˜P could have the correct y = f(x) value “hardwired” and could answer
correctly without having to perform any computation at all. Similarly, for cer-
tain inputs x, x′ and a certain function f , a prover ˜P after computing y = f(x)
might be able to “recycle” some of the computation effort (by saving some state)
and compute y′ = f(x′) incurring a much smaller cost than computing it from
scratch. This is the reason our definition is parametrized over an input distrib-
ution D (and all the expectations, including the computation of the reward, are
taken over the probability of selecting a given input x).

A way to address this problem was suggested in [6] under the name of Unique
Inner State Assumption (UISA): when inputs x are chosen according to D,
then we assume that computing f requires cost T from any party: this can
be formalized by saying that if a party invests t = γT effort (for γ ≤ 1), then
it computes the correct value only with probability negligibly close to γ (since
a party can always have a “mixed” strategy in which with probability γ it runs
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the correct computation and with probability 1 − γ does something else, like
guessing at random).

Using this assumption [6] solve the problem of the “repeated executions with
budget” by requiring the verifier to check the correctness of a random subset of
the the prover’s answer by running the computation herself on that subset. This
makes the verifier “efficient” only in an amortized sense.

In [8] we formalized the notion of Sequential Composability in Definition 4
and, using a variation of the UISA, we showed protocols that are sequentially
composable where the verifier is efficient (i.e. polylog verification time) on each
execution. Unfortunately that proof of sequential composability works only for
a limited subclass of log-depth circuits.

5.2 Sequential Composability of Our New Protocol

To prove our protocol to be sequentially composable we need two main assump-
tions which we discuss now.

Hardness of Guessing States. Our protocol imposes very weak requirements
on the prover: the verifier just checks a single computation step in the entire
process, albeit a step chosen at random among the entire sequence. We need an
equivalent of the UISA which states that for every correct transition that the
prover is able to produce he must pay “one” computation step. More formally
for any Turing Machine M we say that pair of configuration γ, γ′ is M -correct
if γ′ can be obtained from γ via a single computation step of M .

Definition 5 (Hardness of State Guessing Assumption). Let M be a Tur-
ing Machine and let LM be the language recognized by M . We say that the Hard-
ness of State Guessing Assumption holds for M , for distribution D and security
parameter ε if for any machine A running in time t the probability that A on
input x outputs more than t, M -correct pairs of configurations is at most ε (where
the probability is taken over the choice of x according to the distribution D and
the internal coin tosses of A).

Adaptive vs. Non-Adaptive Provers. Assumption 5 guarantees that to
come up with t correct transitions, the prover must invest at least t amount
of work. We now move to the ultimate goal which is to link the amount of work
invested by the prover, to his probability of success. As discussed in [8] it is
useful to distinguish between adaptive and non-adaptive provers.

When running a rational proof on the computation of M over an input x, an
adaptive prover allocates its computational budget on the fly during the execu-
tion of the rational proof. Conversely a non-adaptive prover ˜P uses his compu-
tational budget to compute as much as possible about M(x) before starting the
protocol with the verifier. Clearly an adaptive prover strategy is more powerful
than a non-adaptive one (since the adaptive prover can direct its computation
effort where it matters most, i.e. where the Verifier “checks” the computation).

As an example, it is not hard to see that in our protocol an adaptive prover
can succesfully cheat without investing much computational effort at all. The
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prover will answer at random until the very last step when he will compute
and answer with a correct transition. Even if we invoke Assumption 5 a prover
that invests only one computational step has a probability of success of 1 −

1
poly(n) (indeed the prover fails only if we end up checking against the initial
configuration – this is the attack that makes Theorem1 tight.).

Is it possible to limit the Prover to a non-adaptive strategy? As pointed
out in [8] this could be achieved by imposing some “timing” constraints to the
execution of the protocol: to prevent the prover from performing large compu-
tations while interacting with the Verifier, the latter could request that prover’s
responses be delivered “immediately”, and if a delay happens then the Verifier
will not pay the reward. Similar timing constraints have been used before in
the cryptographic literature, e.g. see the notion of timing assumptions in the
concurrent zero-knowedge protocols in [11]. Note that in order to require an
“immediate” answer from the prover it is necessary that the latter stores all the
intermediate configurations, which is why we require the prover to run in space
O(T (n)S(n)) – this condition is not needed for the protocol to be rational in the
stand-alone case, since even the honest prover could just compute the correct
transition on the fly. Still this could be a problematic approach if the protocol
is conducted over a network since the network delay will most likely be larger
than the computation effort required by the above “cheating” strategy.

Another option is to assume that the Prover is computationally bounded (e.g.
the rational argument model introduced in [15]) and ask the prover to commit to
all the configurations in the computation before starting the interaction with the
verifier. Then instead of sending the configuration, the prover will decommit it
(if the decommitment fails, the verifier stops and pays 0 as a reward). If we use a
Merkle-tree commitment, these steps can be performed and verified in O(log n)
time.

In any case, for the proof we assume that non-adaptive strategies are the
only rational ones and proceed in analyzing our protocol under the assumption
that the prover is adopting a non-adaptive strategy.

The Proof. Under the above two assumptions, the proof of sequential compos-
ability is almost immediate.

Theorem 4. Let L ∈ NTISP[poly(n), S(n)] and M be a TM recognizing L.
Assume that Assumption 5 holds for M , under input distribution D and para-
meter ε. Moreover assume the prover follows a non-adaptive strategy. Then the
protocol of Sect. 3 is a (KRε,K)-sequentially composable rational proof under D
for any K ∈ N, R ∈ R≥0.

Proof. Let ˜P be a prover with a running time of t on input x. Let T be the total
number of transitions required by M on input x, i.e. the computational cost of
the honest prover.

Observe that p̃x is the probability that V makes the final check on one of the
transitions correctly computed by ˜P . Because of Assumption 5 we know that the
probability that ˜P can compute more than t correct transitions is ε, therefore
an upper bound on p̃x is t

T + ε and the Theorem follows from Corollary 3. ��
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6 Lower Bounds for Rational Proofs

In this section we discuss how likely it is will be able to find very efficient non-
cryptographic rational protocols for the classes P and NP.

We denote by BPQP the class of languages decidable by a randomized algo-
rithm running in quasi-polynomial time, i.e. BPQP =

⋃

k>0 BPTIME[2O(logk(n))].
Our theorem follows the same approach of Theorem 16 in [15]5.

Theorem 5. NP �⊆ DRMA[polylog(n), polylog(n), poly(n)] unless NP ⊆ BPQP.

Proof Sketch. Assume there exists a rational proof πL for a language L ∈ NP
with parameters as the ones above. We can build a PTM M to decide L as
follows: (i) M generates all possible transcripts T for πL; (ii) for each T , M
estimates the expected reward RT associated to that transcript by sampling
rew(T ) t times (recall the reward function is probabilistic); (iii) M returns the
output associated to transcript T ∗ = arg maxT RT .

Consider the space of the transcripts with a polylogarithmic number of
rounds and bits exchanged. The number of possible transcripts in such pro-
tocol is bounded by (2polylog(n))polylog(n) = 2polylog(n). Let Δ be the (noticeable)
reward gap of the protocol. By using Hoeffding’s inequality we can prove M can
approximate each RT within Δ/3 with probability 2/3 after t = poly(n) samples.
Recalling the definition of reward gap (see Remark 1), we conclude M can decide
L in randomized time 2polylog(n). ��

It is not known whether NP �⊆ BPQP is true, although this assumption has
been used to show hardness of approximation results [21,23]. Notice that this
assumption implies NP �⊆ BPP [18].

Let us now consider rational proofs for P. By the following theorem they
might require ω(log(n)) total communication complexity (since we believe P ⊆
BPNC to be unlikely [25]).

Theorem 6. P �⊆ DRMA[O(1), O(log(n)), polylog(n)] unless P ⊆ BPNC.

Proof Sketch. Given a language L ∈ P we build a machine M to decide L as
in the proof of Theorem5. The only difference is that M can be simulated by
a randomized circuit of polylog(n) depth and polynomial size. In fact, all the
possible 2O(log(n)) = poly(n) transcripts can be simulated in parallel in O(log(n))
sequential time. The same holds computing the t = poly(n) sample rewards for
each of these transcripts. By assumption on the verifier’s running time, each
reward can be computed in polylogarithmic sequential time. Finally, the estimate
of each transcript’s expected reward and the maximum among them can be
computed in O(log(n)) depth. ��
Remark 3. Theorem 6 can be generalized to rational proofs with round and com-
munication complexities r and c such that r · c = O(log(n)).

5 Since we only sketch our proof the reader is invited to see details of the proof [15].
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7 Conclusions and Open Problems

We presented a rational proof for languages recognized by (deterministic) space-
bounded computations. Our protocol is the first rational proof for a general class
of languages that does not use circuit representations. Our protocol is secure
both in the standard stand-alone notion of rational proof [3] and in the stronger
composable version in [8].

Our work leaves open a series of questions:

– Can we build efficient rational proofs for arbitrary poly-time computations,
where the verifier runs in sub-linear (or even linear) time?

– Our proof of sequential composability considers only non-adaptive adver-
saries, and enforces this condition by the use of timing assumptions or
computationally bounded provers. Is it possible to construct protocols that
are secure against adaptive adversaries? Or is it possible to relax the tim-
ing assumption to something less stringent than what is required in our
protocol?

– It would be interesting to investigate the connection between the model of
Rational Proofs and the work on Computational Decision Theory in [17].
In particular looking at realistic cost models that could affect the choice of
strategy by the prover particularly in the sequentially composable model.

In Sect. 1.5 we described the two main approaches to Rational Proofs design:
scoring rules and weak interactive proofs. Trying and compare the power of these
approaches, two natural questions arise:

– Does one approach systematically lead to more efficient rational proofs (in
terms of rounds, communication and verifying complexity) than the other?

– Is one approach more suitable for sequential composability than the other?

We believe these two open questions are worth pursuing. Some discussion follows.
Regarding the first question: in the context of “stand-alone” (non sequential)

rational proofs it is not clear which approach is more powerful. We know that for
every language class known to admit a scoring rule based protocol we also have a
weak interactive proof with similar performance metrics (i.e. number of rounds,
verifier efficiency, etc.). Our result is the first example of a language class for
which we have rational proofs based on weak interactive proofs but no example
of a scoring rule based protocol exist6. This suggests that the weak interactive
proof approach might be the more powerful technique. It is open if all rational
proofs are indeed weak interactive proofs: i.e. that given a rational proof with
certain efficiency parameters, one can construct a weak interactive proof with
“approximately” the same parameters.

On the issue of sequential composability, we have already proven in [8] that
some rational proofs based on scoring rules (such as Brier’s scoring rule) are not

6 We stress that in this comparison we are interested in protocols with similar effi-
ciency parameters. For example, the work in [3] presents several large complexity
classes for which we have rational proofs. However, these protocols require a poly-
nomial verifier and do not obtain a noticeable reward gap.
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sequentially composable. This problem might be inherent at least for scoring
rules that pay a substantial reward to incorrect computations. What we can say
is that all known sequentially composable proofs are based on weak interactive
proofs ([4,8]7 and this work). Again it is open if this is required, i.e. that all
sequentially composable rational proofs are weak interactive proofs.

Acknowledgments. The authors would like to thank Jesper Buus Nielsen for sug-
gesting the approach of the construction in Theorem 1.
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